Литий ионные автомобильные аккумуляторы: Литиевые аккумуляторы для автомобилей — особенности эксплуатации

Содержание

Литиевый аккумулятор для автомобиля: преимущества и недостатки

Литиевый аккумулятор для автомобиля набирает все большую популярность. Легкие литиевые аккумуляторы разработаны для целого ряда транспортных средств, начиная от мотоциклов и заканчивая военной техникой. Растущий спрос на них заставил поставщиков и ученых сосредоточиться на повышении плотности энергии, рабочей температуры, безопасности, долговечности, времени зарядки и выходной мощности литий-ионных батарей.

Литиевый аккумулятор для автомобиля

Литиевый аккумулятор для автомобиля

Разработка литиевых АКБ началась с 1912 года под руководством Г.Н Льюиса, но появились первые литиевые неперезаряжаемые источники питания только в начале 1970-х годов. В 1980-х годах попытались разработать перезаряжаемый питающий элемент, но разработка не удалась из-за нестабильности в металлическом литии, используемом в качестве основного материала.

Литиевая батарея использует литий в качестве анода. АКБ Lion используют графит в качестве анода и активных материалов в катоде.

В связи с нестабильностью лития во время зарядки ученые стали использовать неметаллический раствор с использованием лития. В 1991 году фирма «SONY» запатентовала первый ион Li батарею. Продолжая развиваться, она остается популярной и перспективной на мировом рынке.

Свинцово-кислотные источники питания уступают литий-ионным автомобильным аккумуляторам по многим показателям. Вес литиевых АКБ на 80 % легче свинцово-кислотных. В батарее Lion долгое время сохраняется зарядка, срок службы достигает десяти лет.

С другой стороны, цена на автомобильные литиевые аккумуляторы в несколько раз превышает стоимость свинцово-кислотных.

Автомобильный литий-ионный аккумулятор часто используется в электромобилях. Электромобиль приводится в движение, используя энергию источника питания.

использования литиевых аккумуляторов для автомобилей

использования литиевых аккумуляторов для автомобилей

Типы батарей электромобиля

В электромобилях используется три типа аккумуляторных батарей: свинцово-кислотные, батареи гидрида металла никеля и литий-ионные источники питания.

Свинцово-кислотные АКБ изобретены в 1859 году и считаются привычной формой источника питания. Они использовались во всех типах автомобильного транспорта. Это вид жидких батарей, которые содержат емкости со слабым раствором серной кислоты.

Свинцовые электроды и кислота используется для производства электроэнергии в АКБ. Источник питания не имеет сложности в обслуживании и отличается небольшой стоимостью. Но содержит опасные газы, которые приводят к взрыву при неправильной эксплуатации.

Типы-батарей-электромобиля

Типы-батарей-электромобиля

Никель-металлогидридные аккумуляторы используются с 1980 года. Это маленькая, легкая и вместительная батарея, которая имеет высокую плотность и не содержит никаких токсических металлов.

Литий-ионные аккумуляторы для автомобилей используются с начала 1990 года. Они отличаются очень высокой плотностью энергии.

Из-за облегченных и низких требований к техническому обслуживанию, литий-ион используется в электронных устройствах, часто в портативных компьютерах.

Этот тип питающих элементов считается лучшим для питания электромобилей.

Какие бывают типы литий-ионных батарей и где используются

В настоящее время используются три вида LIB, которые отличаются материалами катода.

Катоды лития, содержащие кобальт (Limo2).

Этот тип особенно эффективен. Кобальтовый ион Со3+ маленький, поэтому катод построен таким образом, что литий-ионные катоды легко перемещаются. Это важно для высокой плотности энергии и емкости, чтобы выпускать маленькие и легкие батареи. Используется в портативной электронике и электромобилях.

Катоды лития, содержащие кобальт

Катоды лития, содержащие кобальт

Литий-кобальтовый оксид LiCoO2 (LCO) – это тонкое устройство чувствительно к повреждениям, поэтому используется лишь в электроприборах.

Литий-Никель-Кобальт-Оксид Алюминия (LiNiO.8Co0.15Alo.05 или NCA) является надежным соединением. Обеспечивая хорошую плотность энергии и высокую мощность, эти материалы используются как литиевые аккумуляторы 12 вольт для автомобиля.

Литий-Никель-Марганец-Кобальт-Оксиды (NMC) – прочнее и долговечнее, чем тип NCA. Большинство производителей электромобилей используют этот катодный материал. При этом существует несколько вариантов, в которых металлы содержат никель, марганец и кобальт в различных соотношениях. Чем больше доля никеля – тем выше содержание энергии.

Катоды из оксида фосфора-железа-лития (LiFePO4 или LFP).

Этот вид также прочен, но имеет низшую плотность энергии, чем катоды LiMО2. Китайские производители используют для электромобилей городского цикла. Заряда хватает на короткие расстояния.

Катоды из оксида марганца-лития (LiMn2O4 или LMO).

Этот вид раньше использовался в электромобилях, но катоды, содержащие кобальт, превосходят их по стабильности и плотности энергии.

В этом видео описаны подробные характеристики ионных аккумуляторов, размеры, состав и расшифровки маркировок.

Преимущества литиевых аккумуляторов

  • Очень высокая плотность энергии. Превосходит в четыре раза свинцово-кислотные источники питания.
  • Высокое напряжение клеток. Литий-ионная ячейка заменяет три ячейки NiCd или NiMH, которые обеспечивают только 1,2 вольта. Ученые в настоящее время работают над обеспечением более высокого напряжения в клетках. Чем больше напряжение в клетках, тем меньше клеток требуется. Это дает возможность сделать батарею легче и вместительнее.
  • Переносят высокие токи разряда. Это позволяет работать автомобильным приборам, таким как холодный стартер или приводы для гибридных автомобилей с маленькой емкостью АКБ.
  • Увеличивают мощность и производительность, в зависимости от требований.
  • Имеют возможность быстрой зарядки.
  • Отсутствует эффект памяти – полная разрядка не влияет на продолжительность срока службы.
  • Низкая скорость саморазряда (от трех до пяти процентов в месяц, сохранят работоспособность до десяти лет).
  • При заряде батареи на 100 % способна отдать энергию тока без технических повреждений.

Вариации базового химического состава (например, различные анодные и катодные материалы) позволяют разнообразить характеристики производительности для конкретных применений.

Преимущества литиевых аккумуляторов

Преимущества литиевых аккумуляторов

Также доступны батареи маленького размера. Материал электрода и керамические электролиты могут быть разделены на твердые (оксид алюминия/силикагель) или гибкие (акриловые волокна) подложки для производства энергии высокой плотности для тонких и плоских батарей.

Недостатки литий-ионных батарей

  • Чувствительность к глубокой разрядке, перегрузка и слишком высокая температура. Но на практике это редко является проблемой. Аккумуляторы уже имеют встроенную электронику, которая защищает от негативных влияний. При использовании LIB без встроенной электроники рекомендуется использовать зарядное устройство, которое для нее предназначено.
  • Повышенная чувствительность к высоким и низким температурам. Оптимальная рабочая температура в пределах 10–35 градусов. При низких температурах мощность батареи падает. Также существуют специально предназначенные ионные источники питания для низких температур, которые поддерживают заряд при температуре -40 градусов, только с ограниченными разрядными потоками.

Безопасность литиевых батарей

При перегреве или перезарядке LIB могут подвергаться разрушению. Это приведет к утечке ядовитых газов, взрыву и пожару. Чтобы этого избежать, батарея лития содержит отказоустойчивую схему, которая отключает источник питания, когда напряжение находится в опасном диапазоне.

Короткое замыкание приведет к перегреву, возгоранию и взрыву. Литий-ионные аккумуляторы, в отличие от свинцово-кислотных, изготавливаются под высоким давлением, они имеют легковоспламеняющийся жидкий электролит. Их качество строго контролируется при изготовлении.

Литий-ионный аккумулятор для автомобиля имеет множество положительных характеристик, но использование его в бензиновых и дизельных двигателях не эффективно и в данное время не применяется. Генератор, который вырабатывает переменный ток в автомобиле, не приспособлен заряжать данный вид аккумуляторов.

Это видео расскажет об использовании литий-ионных аккумуляторов для бензиновых и дизельных двигателей.

Литиевый аккумулятор для автомобиля — Мобильные Электросистемы

Преимущества литиевых аккумуляторов хорошо известны. При равной номинальной емкости литиевая батарея весит в три раза меньше свинцово-кислотной и занимает в два раза меньше места. Заряжаемый током  0,5С литиевый АКБ выдерживает в 20 раз больше циклов чем  свинцово-кислотный, поэтому с учетом срока службы он на сегодня самый дешевый и выгодный.

Характеристики литиевых аккумуляторов делают их идеальными источниками автономного питания на автомобилях с дополнительным бортовым оборудованием и на тех транспортных средствах где свободного места для установки массивной свинцово-кислотной аккумуляторной батареи недостаточно.

Содержание статьи

Количество циклов литиевого АКБ

Срок службы аккумулятора измеряют в циклах заряда – разряда. Аккумулятор считается непригодным для дальнейшего использования когда его емкость падает ниже 80% от первоначального номинального значения. Количество циклов можно рассматривать как способность ячеек сохранять и передавать энергию потребителям. Литиевые батареи обычно выдерживают не менее 1000 циклов.

Изменение емкости аккумуляторов разного типа в процессе эксплуатацииРезультаты испытаний нескольких аккумуляторов глубокого разряда разного типа. Специальное устройство разряжало четыре аккумулятора током 25 А до 10,5 вольт и затем заряжало их таким же током до 14,4 Вольт. В реальной жизни аккумуляторы часто подвергаются таким же нагрузкам. В испытаниях участвовали недорогой жидко-кислотный аккумулятор, две модели AGM и LiFePo4 аккумулятор. Аккумулятор с жидким электролитом вышел из строя после 18 циклов. AGM — после 180. Состояние литиевого аккумулятора не изменилось

Со временем ячейки стареют. Активные химические вещества в них разрушаются, емкость падает, а внутреннее сопротивление возрастает. На скорость старения влияют величина зарядного и разрядного тока, температура и глубина разряда. Устройством, продлевающим срок службы литиевого аккумулятора, является BMS. Хорошо продуманная электронная система управления контролирует состояние батареи, предотвращает ее перезарядку и защищает ячейки от повреждения при глубоком разряде

Зарядка LiFePO4 аккумулятора

Электрическую энергию можно «накачать» в аккумулятор быстро. Однако химические реакции не протекают мгновенно, поэтому состояние электролита между электродами окажется разным. Ближайшие к электродам слои «зарядятся», а расположенные дальше нет. Разница будет особенно заметна в ячейках с большой емкостью и объемом электролита.

Графики тока и напряжения во время зарядки LiFePO4 аккумулятораГрафики тока и напряжения во время зарядки LiFePO4 аккумулятора

Высокий зарядный ток не сильно ускоряет полную зарядку аккумулятора. Хотя заданное напряжение достигается быстрее, этап насыщения занимает больше времени. При высоком токе первая стадия оказывается короче, но зато вторая длиннее.

Максимально допустимый зарядный ток для аккумуляторов принято выражать в долях емкости. Например, если для литиевого аккумулятора емкостью 100 Ач указан ток 0,5C (где C — емкость аккумулятора), то его непрерывной ток зарядки не должен превышать 50 А. Как правило для литий-железо фосфатных (LiFePO4) аккумуляторов максимальный ток равен 0,5-1С

Повышенная температура сигнализирует о неправильном алгоритме зарядки или о внутренних проблемах аккумулятора

LiFePO4 аккумулятор в автомобиле

Литиевые аккумуляторные батареи чувствительны к величине тока и напряжения зарядки. Несоблюдение рекомендованных значений сокращает срок службы ячеек, уменьшает их емкость и может даже разрушить, причинив много дорогостоящих повреждений.

Источник зарядки аккумуляторов в автомобиле – это генератор двигателя. Стандартный регулятор автомобильного генератора настроен на 14,0-14,4 Вольта, что позволяет быстро заряжать стартовый аккумулятор и защищает его от сульфатации. Небольшой перезаряд для свинцово-кислотного аккумулятора не страшен, поэтому напряжение остается постоянным в течении всего времени работы двигателя.

Схема подключения литиевого аккумулятора в автомобиле с помощью развязывающего релеаРеле развязки соединяет стартовый и сервисный аккумуляторы. Но оно не обеспечивает литиевый аккумулятор правильным зарядным напряжением и не защищает его от высокого тока. Реле не увеличивает напряжение, если оно слишком низкое и не уменьшает его до безопасного уровня, когда оно слишком высокое. Полностью заряженный литиевый аккумулятор остается под тем же напряжением как и во время зарядки. Реле не ограничивает ток генератора, поэтому ток получаемый аккумулятором может в несколько раз превзойти безопасный уровень, определенный производителем. При такой схеме подключения литиевый аккумулятор заряжается неправильно и подвергается опасности во время эксплуатации

14,4 Вольта подходит и для заряда LiFePO4 аккумуляторов. Но заряженный на 100% литиевый аккумулятор не должен постоянно находится под таким напряжением. Оно опасно для батареи и может повредить ее во время продолжительной поездки.

Несовместимость между зарядным напряжением и требованиями LiFePO4 аккумулятора возрастает еще сильнее на автомобилях с дв

Особенности использования литиевых аккумуляторов для автомобиля

Каждый автомобилист знает, насколько важную роль в работе транспортного средства играет аккумуляторная батарея. При этом покупка АКБ сопровождается обычно буквально несколькими вопросами, поскольку нужно подобрать батарею с подходящими для машины характеристиками.

Литиевый аккумулятор для машины

И часто при покупке обращают внимание на то, к какому типу относится та или иная модель. Для автомобилей применяются разновидности свинцово-кислотных АКБ, которые бывают обслуживаемыми и необслуживаемыми.

В зависимости от того, какие используются добавки и форма электролита, их также можно разделить на AGM устройства или гелевые.

Только вот применительно к машинам с ДВС редко говорят про литиевые аккумуляторы. Можно ли их использовать, какие у них сильные и слабые стороны и что вообще нужно знать автомобилистам о возможностях использования таких батарей вместо свинцово-кислотных.

Разновидности

Если говорить о батареях литиевого типа, которые могут применяться в автотранспортных средствах, то здесь стоит выделить несколько вариантов.

  • Li-ion. Они же литий-ионные. Актуальное решение для электрокаров. Здесь заряд переносят положительно заряженные ионы лития. В роли отрицательных пластин сначала использовали литий, затем каменноугольный кокс, а теперь перешли на графит. Внутри корпуса предусматриваются платы защиты и являются обязательным компонентом. Такие АКБ отличаются по используемому катодному материалу.
  • Они же литий-полимерные. Отличаются от первого типа лишь наличием полимерного, а не жидкого электролита. Характеристики несколько усовершенствовали. Могут работать при температуре до -20 градусов.
  • Это литий-феррофосфатные батареи, имеющие наиболее серьёзные перспективы для использования в автомобилях. Именно на них делается сейчас основной акцент, как на потенциальный заменитель стандартных свинцово-кислотных АКБ.

Теперь следует взглянуть на такие батареи более подробно и узнать об их возможном применении на автомобилях.

Преимущества и недостатки

Литий-феррофосфатные АКБ имеют достаточно внушительный список преимуществ. Но есть и недостатки.

К сильным сторонам относят такие пункты:

  • достаточно продолжительный срок службы;
  • медленная потеря ёмкости;
  • стабильные показатели напряжения разряда;
  • не токсичные, и не опасные для окружающей среды;
  • разряд происходит с меньшей скоростью;
  • могут переносить достаточно низкие температуры;
  • минимальная подверженность возгораниям и взрывам.

Но опять же это сравнение скорее с другими разновидностями литиевых АКБ, а не со свинцово-кислотными.

При этом у литиевых аккумуляторов для автомобилей есть ряд потенциальных недостатков, которые пока не позволяют перейти на активное применение в машинах.

Литиевый аккумулятор в машине

Речь идёт о таких минусах:

  • чтобы получить полноценную батарею на 12,8 В, требуется соединить 4 литиевых аккумулятора;
  • высокая стоимость, которая превосходит кальциевые и свинцовые АКБ в 3-4 раза;
  • низкая устойчивость к отрицательным температурам;
  • в российских условиях климата на морозе будут быстро терять заряд;
  • при заморозках заряжать такие АКБ очень сложно;
  • при температуре ниже 0 градусах зарядка запрещена;
  • при объединении нескольких батарей, обязательно применяется плата балансировки;
  • не любят постоянную зарядку, идущую от АКБ, и нужно ставить дорогие дополнительные платы защиты.

Как видите, недостатки более чем весомые.

Но некоторые продолжают утверждать, что такие АКБ использовать можно и у них неплохие перспективы.

Сколько циклов выдерживают

Весь дальнейший разговор будет идти именно о LifePo4 батареях, поскольку они максимально близки к стандартным автомобильным АКБ и есть смысл их сравнивать.

Циклом называют процесс разряда-заряда. Срок службы определяется тем, сколько таких циклов сможет пережить АКБ.

АКБ считают непригодными к использованию, если их ёмкость упала ниже 80% от номинальной. Фактически число циклов зависит от способности рабочих ячеек сохранять, а также передавать энергию к потребителям.

Литиевые батареи способны выдерживать порядка 1000 циклов, что было подтверждено соответствующими испытаниями.

В рамках тестирования воссоздали условия, приближенные к реальным. Сравнивали литиевый, свинцово-кислотный и AGM аккумуляторы. Последний выдержал 180 циклов, свинцовый всего 18, а состояние LifePo4 вообще никак не изменилось.

Так что в плане способности выдерживать многочисленные циклы такие аккумуляторные батареи действительно имеют внушительные перспективы. Что же касается литий-ионных аккумуляторов для автомобилей, то с ними подобные сравнительные тесты не проводили. И не совсем корректно сравнивать батареи, предназначенные преимущественно для электрокаров и не применяемые на машинах с ДВС.

Процесс зарядки

Теперь немного о том, как заряжать современный автомобильный аккумулятор типа LifePo4. На практике литиевый аккумулятор способен достаточно быстро накопить в себе электроэнергию. Но здесь течение электрохимических процессов не проходит моментально, из-за чего состояние электролита меняется не пропорционально. Слои, расположенные ближе к электроду, заряжаются быстрее, чем отдалённые.

Литиевая АКБ для машины

Если увеличить параметры зарядного тока, это всё равно существенно не ускорит процесс заряда АКБ литиевого типа.

Задать напряжение можно быстро, но насыщение требует больше времени. Если подавать высокий ток заряда, первая стадия зарядки проходит быстрее, но это автоматически продлевает вторую стадию насыщения.

Предельный зарядный ток определяется в долях от ёмкости. К примеру, когда у АКБ литиевого типа указана ёмкость 100 Ач, тогда ток составит 0,5С.

Буква С означает показатель ёмкости аккумуляторной батареи.

В итоге получается, что для устройств с ёмкостью 100 Ач требуется ток заряда с показателем не более 50 А. Максимальный зарядный ток для литий-феррофосфатных батарей обычно составляет в пределах от 0,5С до 1С. Тут следует смотреть на инструкции производителя.

Если в процессе заряда увеличивается температура, это говорит о неправильно подобранном алгоритме зарядки. Либо имеются какие-то внутренние проблемы с АКБ. Во втором случае придётся обращаться к специалистам.

Выбор АКБ для автомобилей

Пока литиевый аккумулятор нельзя позиционировать как полноценно автомобильный. Имеющиеся недостатки заставляют задумать о том, насколько актуально применять подобные решения на машине.

Если вас заинтересовали литиевые аккумуляторы, тогда стоит обратить внимание на тип LifePo4. Они больше остальных подходят для машины, оснащённой обычным ДВС.

При подборе необходимо учитывать такие моменты.

  • Ячейки литий-феррофосфатных АКБ со временем имеют свойство стареть. Это происходит из-за разрушения компонентов внутри. Ёмкость падает, сопротивление внутри растёт. На скорость состаривания сильно влияет зарядный и разрядный ток, температура и глубина возникающего разряда. Чтобы продлить срок службы литиевым аккумуляторам, используется BMS. Это электронная система управления, созданная для контроля состояния АКБ, защиты от перезарядки и повреждений ячеек в случае глубокого разряда. BMS выбирают с высоким током. Непрерывный зарядный ток должен составлять от 0,5С до 1С. Смотрите на непрерывный, а не максимальный ток. Хорошие АКБ обязательно имеют систему отключения при перегрузках, перегреве и перезаряде.
  • Цена. В зависимости от конкретного типа литиевого аккумулятора и модели, разница между ними может составлять 2 раза. В сравнении с теми же свинцово-кислотными, последние дешевле в 2-4 раза. Дорогая — ещё не означает лучшая. Опирайтесь на характеристики.
  • Скорость зарядки. Именно максимальная. Считается важной характеристикой. Дешёвые модели имеют около 0,3С. У дорогих это 1С. В зависимости от ситуации, порой лучше взять несколько недорогих АКБ, что более актуально для автомобилей. Это позволит снизить скорость зарядки и параллельно увеличит суммарную ёмкость АКБ.
  • Работа без подзарядки. В отличие от тех же свинцово-кислотных моделей, литиевые открывают доступ к 100% своей ёмкости. Можно параллельно подключить сразу несколько АКБ. Это позволит без запуска двигателя долгое время включать разные потребители.
  • Мощность от генератора. Параметр влияет на ёмкость и на подбор зарядного устройства. Генераторы в машинах обычно имеют мощность порядка 2000 Вт. Если в авто ставится лишь один дополнительный аккумулятор на 100 Ач, для его зарядки хватит устройства на 30 А. Так генератор будет заряжать дополнительную батарею с помощью тока на 25 А, а аккумуляторам передавать 350 Вт.

Как видите, в основном литиевые АКБ рассматриваются как дополнительные, а не как основные батареи в автомобилях. Но и это первый шаг, который может оказаться решающим.

Устройство литиевого аккумулятора

При использовании литиевых АКБ требуется использовать специальные зарядные устройства, предназначенные для такого типа аккумуляторов.

Обычными ЗУ, которыми вы заряжаете свой свинцово-кислотный аккумулятор, зарядить литиевый не получится.

Особенности установки

Современный Li-ion автомобильный аккумулятор, то есть литий-ионный, завоевал популярность благодаря применению именно в электрокарах.

В отношении автомобилей с ДВС пока уместно говорить об использовании именно литий-феррофосфатных моделей.

Монтаж в машину предусматривает выполнение нескольких условий:

  • При их установке важно сопоставить выбранные характеристики с параметрами и возможностями своего автомобиля. Если значения не будут соответствовать, система защиты, то есть BSM, попросту отключит АКБ.
  • Если литиевая батарея будет получать заряд через генератор машины, здесь придётся приобрести и установить ещё одно дополнительное устройство в виде специального зарядника.
  • Отрицательным проводником лучше использовать не корпус машины, а кабель, который идёт от минусовой клеммы сервисной АКБ к минусовой клемме стартовой батареи.
  • Все кабели, соединённые с АКБ, требуется оснастить защитными предохранителями. Их рекомендуют располагать максимально близко к клемме на батарее.

Говорить о массовом внедрении литиевых батарей в обычные легковые машины, оснащённые ДВС, не приходится. Это перспективное, но пока ещё сырое и недоработанное решение.

Такие батареи стоят дорого, имеют ряд недостатков, предъявляют повышенные требования.

техническая характеристика, классификация, инструкция по использованию, спецификация, установка и особенности эксплуатации

Для многих транспортных средств вес аккумуляторной батареи и скорость ее разрядки играют немаловажную роль. Специально для таких автомобилей производителями были созданы литиевые системы. В чем их преимущество перед кислотными АКБ, можно ли их эксплуатировать на современных машинах?

Что представляют собой литиевые батареи?

Литий-ионные аккумуляторы для авто в эпоху гибридных и электрических моделей отнюдь не являются новшеством: их можно встретить во многих машинах, с успехом дебютирующих на рынках. Батареи такого типа являются отличными источниками питания для электроавтомобилей. При этом их использование в обычных машинах потребует внесения определенных изменений в конструкцию.

литий ионный аккумулятор для автомобиля

История создания литиевых АКБ

Первые модели литий-ионных аккумуляторных батарей появились в 70-х годах прошлого века. Аккумуляторы, выполненные на их основе, обладали серьезными проблемами, устранить которые удалось только к 90-м годам. Причиной подобных проблем была высокая активность лития: при высоком токе могло произойти воспламенение батареи, в связи с чем производители отказались от применения чистого лития, перейдя на его ионы, что дало наименование АКБ.

В сравнении с литиевыми аккумуляторами, литий-ионные обладают меньшей энергетической плотностью, но более безопасны при условии соблюдения режимов заряда и разряда. В их состав не входит металлический литий, а процесс разряда и заряда заключается в переносе с одного электрода на другой ионов лития.

литий аккумулятор для автомобиля

Li-Ion и Li-Pol аккумуляторы

Первые модели литий-ионных автомобильных аккумуляторов состояли из катодного материала на алюминиевой фольге и анодного на медной фольге, помещенных внутрь корпуса и разделенных специальным сепаратором, пропитанным жидким электролитом.

Герметичный корпус АКБ оснащался клапаном сброса внутреннего давления. К клеммам анод и катод подключались токосъемниками.

В литиевых ионных автомобильных аккумуляторах заряд переносится положительно заряженными ионами лития, которые внедряются в кристаллические решетки других материалов — солей и кислот металлов, графита, образуя с ними химическую связь.

Изначально роль отрицательных пластин выполнял металлический литий, который впоследствии сменился на каменноугольный кокс и графит. Использование осксида кобальта позволило увеличить температурный диапазон работы АКБ и повысить количество циклов заряда/разряда.

В комплекте с литиевыми ионными аккумуляторами для авто имеются защитные платы типа BMS.

Виды литиевых батарей

Литий-ионные аккумуляторы различаются по типу катодного материала:

  • LiCoO2. В качестве электролита используются твердые растворы на основе никелата лития.
  • LiMnO4 с литий-марганцевой шпинелью.
  • LiPol, литий-полимерный. Отличается от Li-Ion только полимерным, а не жидким электролитом. По характеристикам он значительно лучше своих аналогов: широкий температурный диапазон работы, различные форы корпуса, низкий саморазряд, большая плотность энергии на единицу массы.

литий ионный аккумулятор для автомобиля отзывы

LiFePO4

Литий-железо-фосфатный, или литий-феррофосфатный аккумулятор считается одним из наиболее перспективных и подходящих для установки на автомобиль. Катод включает железо и фосфаты и обладает следующими преимуществами:

  • большой эксплуатационный ресурс и медленная потеря емкости — даже спустя несколько лет работы его емкость больше, чем у Li-Ion аналогов;
  • стабильное напряжение на ячейки 3,2-3,3 В. При подключении всех четырех создает стандартное напряжение 12,8 В;
  • кобальт в подобных батареях не используется, соответственно, АКБ не наносит вреда окружающей среде;
  • пиковые точки более высокие, в отличие от аналогов;
  • небольшая скорость разряда;
  • термическая стабильность — не перегревается, не взрывается;
  • может работать в широком температурном диапазоне.

Конечно, у него есть и свои минусы — к примеру, его удельная плотность энергии меньше, чем у обычного литий-аккумулятора для автомобиля, на 14-15%. К тому же его эксплуатация требует обязательной установки плат защиты.

литиевый ионный аккумулятор автомобильный

Преимущества литиевых АКБ

Для литий-ионных аккумуляторов для автомобиля характерны следующие достоинства:

  • небольшой вес, что снижает массу автомобиля;
  • сохранение заряда на протяжении длительного времени;
  • выдерживают большое количество циклов заряда и разряда.

Соотношение выхода безопасного тока к номинальной емкости у литий-ионных аккумуляторов значительно выше. Соответственно, на выполнение конкретного объема работы им требуется значительно меньше времени, чем кислотным батареям. Такие АКБ могут поглощать и сбрасывать большое количество тока. Впрочем, литий-ионные аккумуляторы для автомобиля не являются панацеей и обладают своими недостатками.

литиевый ионный аккумулятор авто

Минусы Li-Ion батарей

Литиевые АКБ сильно зависят от температуры окружающей среды: при понижении температуры падает их мощность. Внутри локальных ячеек нередко происходят сбои, из-за которых такие источники питания требовательны к качеству зарядки. Стоимость литий-ионных аккумуляторов для автомобиля значительно выше, чем цена стандартных батарей, ввиду чего литий-ионные АКБ являются неконкурентоспособными.

Генераторы, устанавливаемые на автомобили, не способны выработать достаточный переменный ток для заряда литиевого аккумулятора, поскольку не приспособлены для этого. Литиевые АКБ, эксплуатируемые в основном в теплом климате, оснащаются конвектором заряда, создающего переменный ток и преобразующего его для использования в литий-ионных аккумуляторах для автомобиля. Заряд уравновешивается благодаря специальной цепи, равномерно распределяясь между четырьмя основными ячейками. Масса такого источника значительно меньше свинцового, что является дополнительным преимуществом.

литий ионные аккумуляторы для авто

Особенности эксплуатации

Литиевые батареи заряжаются при минимальном напряжении 2,7 В и максимальном 4,2 В. Диапазон был значительно снижен производителями (до 3,3-4,1 В) с целью продления сроков эксплуатации. Заряд литиевых аккумуляторов, устанавливаемых на современных автомобилях, должен постоянно находиться в пределах 45% для сохранения максимального рабочего ресурса АКБ.

Учитывая, что литий обладает высокой активностью, разбор аккумуляторной батареи необходимо проводить только при наличии определенных навыков. Лицо и руки обязательно должны быть закрыты специальными защитными средствами. Конструкция подобных элементов питания подразумевает наличие элементов, способных нанести вред окружающей среде, ввиду чего подобные батареи необходимо утилизировать, а не выбрасывать.

Требуемые изменения

Установка литий-ионного аккумулятора для автомобиля обладает определенными преимуществами и недостатками. Основным достоинством такого типа АКБ является их небольшой вес, что позволяет снизить общую массу автомобиля, пусть и ненамного.

Вес аккумуляторной батареи играет немалую роль в том случае, если автомобиль будет использоваться для скоростной езды. Спорным моментом, отмечаемым в отзывах о литий-ионном аккумуляторе для автомобиля, является его высокая стоимость: цена на такие батареи в несколько раз выше, чем на стандартные АКБ. Замена свинцово-кислотного АКБ на литий-ионный потребует от автовладельца крупных вложений.

литий ионные автомобильные аккумуляторы

Резюме

Литий-ионные аккумуляторы для автомобилей не пользуются особой популярностью по разным причинам:

  • Стоимость. Классические свинцово-кислотные батареи аналогичной емкости стоят в два-четыре раза дешевле, чем литий-ионные.
  • Плохая переносимость отрицательных температур — заряжать их при 0 градусов и ниже не рекомендуется.
  • Плата защиты и балансировки. В зависимости от технологии изготовления литиевые батареи состоят из нескольких банок. При разнице напряжений на элементах одна из банок может выйти из строя либо воспламениться. Для равномерного прохождения заряда по каждой банке требуется установка специального балансира, чего не нужно при эксплуатации свинцового аккумулятора.
  • Противопоказана постоянная зарядка от генератора. Требуется установка специальных защитных плат.
  • При повреждении литий-ионных аккумуляторов для автомобиля или отказе системы защиты провоцируется постоянная зарядка, что может привести к воспламенению, которое практически невозможно потушить из-за того, что огонь поддерживается без доступа кислорода и с температурой более 3000 градусов. В плане безопасности самым лучшим считается LiFePo4 аккумулятор, который не взрывается и почти не поддерживает горение.

С учетом высокой стоимости и прочих особенностей литиевые аккумуляторы являются не самым лучшим вариантом батарей для автомобиля. Приобретать подобные АКБ стоит только в том случае, если для автовладельца важен вес транспортного средства.

Литиевый АКБ для автомобиля: плюсы и минусы

Обычно мы привыкли, что на автомобилях в качестве аккумуляторов используются свинцово-кислотные с различными добавками в пластинах батареи. Добавки могут быть от кальция до серебра, электролит может иметь форму геля, жидкости или быть запечатанным в AGM. Возникает логичный вопрос, вот в мобильниках используются эффективные литиевые батареи, почему такие же не ставят в автомобили?

 

Почему Литий-ионные аккумуляторы не ставят на машины

 

Литиевые батареи в автомобилях

 

Литиевые аккумуляторы – довольно непростая вещь в контексте автомобильной тематики. Их неохотное использование обросло множеством мифов, однако есть и вполне объективные причины, делающие установку таких батарей в данный момент нежелательной. На заре изобретения литиевых батарей в минусе был металлический литий, потом его сменил кокс, а сегодня всё больше распространяется графит. После добавления оксида кобальта аккумуляторы снизили свой нижний температурный порог, а также повысилось количество циклов заряд\разряд. Все литиевые батареи оснащены специальной защитной платой, контроллером. Li-ion батареи по материалу катода различают:

 

  • Кобальто литиевые – LiCoO2;
  • Литий полимерные – LiPol

 

Литий-ионные аккумуляторы

 

Отличие основное такого аккумулятора в том, что электролит у него не жидкость, а полимер. Характеристики у полимеров существенно лучше, низкий саморазряд, более высокая плотность, компактность, отсутствует эффект памяти. Рабочая температура от минус двадцати. Наиболее перспективным для оснащения автомобилей специалисты считают LiFEPO4. В этом аккумуляторе материал катода с добавлением железа, а также фосфатов. Из основных преимуществ этого варианта можно выделить:

 

  • Долговечность, батарея очень медленно теряет свою ёмкость. На длительном промежутке времени это очень заметно.
  • Стабильно держит напряжение разряда, отклонения от правильных 12,8В минимальное.
  • В составе нет кобальта, то есть батарея нетоксична, угрозы экологии нет.
  • Пиковые токи существенно выше обычных Liion.
  • Разряжается медленнее.
  • Не взрывоопасен, поскольку термическая стабильность на высоте.
  • Может работать в условиях низких температур, вплоть по минус пятидесяти градусов.

 

Из минусов внимания заслуживает меньшая удельная плотность, да и контроллер использовать обязательно.

 

Преимущества Литий-ионных аккумуляторов

 

Так свинец или литий?

 

Если брать энергетическую плотность, то здесь впереди, конечно, литиевые элементы, у них гораздо лучше дела с продолжительностью жизненного цикла, заряжаются быстрее, лучшее сопротивление, нет практически саморазряда. Однако практически не ставят их, почему? Всё, на самом деле, банально, они дорогие, к тому же хуже себя чувствуют, чем кислотные на морозе. Безопасность свинцово кислотных батарей гораздо выше, что время от времени нам показывают случаи с возгоранием аккумуляторов в смартфонах.

Другие записи по теме:

Литиевые аккумуляторы для авто – мифы и реальность — Информация

Существует категория автомобилистов, которые пользуются машиной, как компьютером – она выполняет свои функции, и какой смысл разбираться, что там под капотом, какая у аккумулятора емкость, насколько он быстро разряжается? И это, в общем-то, верно. Каждый должен заниматься своим делом. Однако есть и другие владельцы авто, которым абсолютно небезразличен ресурс, параметры заряда, масса АКБ. Видимо, именно для них были придуманы литиевые системы аккумуляторных батарей. Зачем они нужны? Чем отличаются от обычных батарей? Об этом предлагаем поговорить дальше.

 

В наш динамичный век, когда на улице можно встретить гибридное авто или электрокар, литиевая аккумуляторная батарея вряд ли может стать диковинкой. Такие системы аккумулирования электроэнергии встречаются во многих транспортных средствах. Да возьмем, хотя бы, Toyota Prius C, которая так популярна в США! Кстати, такие технологии осваивают не только японцы, ярким подтверждением чему может служить новенький Ford Fusion Hybrid. То есть, в роли тяговых батарей литиевые аккумуляторы выглядят прекрасно. Но почему не использовать их же в виде стартерных АКБ? Существуют нюансы. Но для начала о преимуществах.

 

Основные плюсы «лития» по сравнению с традиционными АКБ:

 

  • Меньший вес, что сказывается на общей массе авто.
  • Более продолжительный период хранения заряда.
  • Способность выдерживать большее количество зарядных и разрядных циклов.

 

Кроме того, следует отметить, что литиевые аккумуляторы обладают намного большим соотношением выходного тока к емкости аккумулятора. А это значит, что по сравнению с обычными АКБ требуется существенно меньше энергии для выполнения аналогичного объема работы. В то же время, не стоит рассматривать «литий», как панацею от всех бед, такие аккумуляторы не лишены целого ряда недостатков.

 

Несколько слов о минусах литиевых аккумуляторов

 

  • Существенное падение мощности литиевых батарей с падением температуры окружающей среды.

 

  • Высокая требовательность к степени заряда, по причине чего случаются сбои в локальных ячейках.

 

  • Высокая цена, которая для сравнения со свинцово-кислотными АКБ составляет около 1500 против 100 долларов США, например, за аккумуляторы Bosch. Другими словами, за «литий» приходится, в среднем, платить в 15 раз больше. 

 

Более того конкурентами традиционных аккумуляторных батарей литиевые аккумуляторы могут стать только тогда, когда у них будет встроенная цепь заряда. Что это значит? Проще говоря, на обычное авто, рассчитанное под стандартный аккумулятор, литиевую батарею без переделок не поставишь. То ли дело McLaren MP4-12C или Porsche GT3, здесь все продумано изначально, и сделано на заводе.

 

Вместо послесловия

 

О том, что литиевые автомобильные аккумуляторы по своим техническим характеристикам выше, чем свинцово-кислотные, далеко не «на голову». Единственный весомый плюс – вес. Но ведь для стокового авто разница в пару килограмм не так уж существенно, ведь выступать на треке в этом случае не нужно. В то же время, даже при желании отдать около полутора тысяч долларов, и поставить на свою машину «литий», сделать это будет непросто, так как для достижения данной цели придется вносить существенные конструктивные изменения в систему электроники авто. Хотя, возможно, при снижении цены, и эта проблема решится легко. Будем ждать!

04.03.2013, 42376 просмотров.

какими могут быть аккумуляторы будущего / Блог компании Mail.ru Group / Хабр

В последние годы мы часто слышали, что вот-вот — и человечество получит аккумуляторы, которые будут способны питать наши гаджеты неделями, а то и месяцами, при этом очень компактные и быстрозаряжаемые. Но воз и ныне там. Почему до сих пор не появились более эффективные аккумуляторы и какие существуют разработки в мире, читайте под катом.


Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.

Но все эти разработки крайне медленно приближаются к коммерческому уровню, что не позволяет ускорить переход с ископаемых на возобновляемые источники. Даже Илон Маск, который любит смелые обещания, был вынужден признать, что его автомобильное подразделение постепенно улучшает литий-ионные аккумуляторы, а не создаёт прорывные технологии.

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков.

Основатель компании SolidEnergy Systems Кичао Ху (Qichao Hu), в течение десяти лет разрабатывавший литий-металлический аккумулятор (анод металлический, а не графитовый, как в традиционных литий-ионных), утверждает, что главная проблема при создании новых технологий хранения энергии заключается в том, что при улучшении какого-то одного параметра ухудшаются остальные. К тому же сегодня существует столько разработок, авторы которых громко утверждают о своём превосходстве, что стартапам очень трудно убедить потенциальных инвесторов и привлечь достаточно средств для продолжения исследований.

Согласно отчёту Lux Research, за последние 8—9 лет компания вложила в исследование хранения энергии около 4 млрд долларов, из которых стартапам, создающим «технологии нового поколения», в среднем досталось по 40 млн долларов. При этом Tesla вложила около 5 млрд долларов в Gigafactory, занимающуюся производством литий-ионных аккумуляторов. Такой разрыв очень трудно преодолеть.

По словам Герда Седера (Gerd Ceder), профессора в области материаловедения Калифорнийского университета в Беркли, создание маленькой производственной линии и решение всех производственных проблем для налаживания выпуска аккумуляторов обходится примерно в 500 млн долларов. Автопроизводители могут годами тестировать новые аккумуляторные технологии, прежде чем решить, приобретать ли создавшие их стартапы. Даже если новая технология выходит на рынок, нужно преодолеть опасный период наращивания объёмов и поиска клиентов. К примеру, компании Leyden Energy и A123 Systems потерпели неудачу, несмотря на перспективность их продуктов, поскольку финансовые потребности оказались выше расчётных, а спрос не оправдал ожиданий. Ещё два стартапа, Seeo и Sakti3, не успели выйти на массовые объёмы производства и значительный уровень дохода и были куплены за гораздо меньшие суммы, чем ожидали первичные инвесторы.

В то же время три основных мировых производителя аккумуляторов — Samsung, LG и Panasonic — не слишком заинтересованы в появлении инноваций и радикальных переменах, они предпочитают незначительно улучшать свою продукцию. Так что все стартапы, предлагающие «прорывные технологии», сталкиваются с основной проблемой, о которой они предпочитают не упоминать: литий-ионные аккумуляторы, разработанные в конце 1970-х, продолжают совершенствоваться.

Но всё же — какие технологии могут прийти на смену вездесущим литий-ионным аккумуляторам?

Литий-воздушные «дышащие» аккумуляторы

В литий-воздушных аккумуляторах в качестве окислителя используется кислород. Потенциально они могут быть в разы дешевле и легче литий-ионных аккумуляторов, а их ёмкость способна оказаться гораздо больше при сравнимых размерах. Главные проблемы технологии: значительная потеря энергии за счёт теплового рассеивания при зарядке (до 30 %) и относительно быстрая деградация ёмкости. Но есть надежда, что в течение 5—10 лет эти проблемы удастся решить. Например, в прошлом году была представлена новая разновидность литий-воздушной технологии — аккумулятор с нанолитическим катодом.

Зарядное устройство Bioo

Это устройство в виде специального горшка для растений, использующего энергию фотосинтеза для зарядки мобильных гаджетов. Причём оно уже доступно в продаже. Устройство может обеспечивать две-три сессии зарядки в день с напряжением 3,5 В и силой тока 0,5 А. Органические материалы в горшке взаимодействуют с водой и продуктами реакции фотосинтеза, в результате получается достаточно энергии для зарядки смартфонов и планшетов.

Представьте себе целые рощи, в которых каждое дерево высажено над таким устройством, только более крупным и мощным. Это позволит снабжать «бесплатной» энергией окружающие дома и будет веской причиной для защиты лесов от вырубки.

Аккумуляторы с золотыми нанопроводниками

В Калифорнийском университете в Ирвайне разработали нанопроводниковые аккумуляторы, которые могут выдерживать более 200 тыс. циклов зарядки в течение трёх месяцев без каких-либо признаков деградации ёмкости. Это позволит многократно увеличить жизненный цикл систем питания в критически важных системах и потребительской электронике.

Нанопроводники в тысячи раз тоньше человеческого волоса обещают светлое будущее. В своей разработке учёные применили золотые провода в оболочке из диоксида марганца, которые помещены в гелеобразный электролит. Это предотвращает разрушение нанопроводников при каждом цикле зарядки.

Магниевые аккумуляторы

В Toyota работают над использованием магния в аккумуляторах. Это позволит создавать маленькие, плотно упакованные модули, которым не нужны защитные корпуса. В долгосрочной перспективе такие аккумуляторы могут быть дешевле и компактнее литий-ионных. Правда, случится это ещё не скоро. Если случится.

Твердотельные аккумуляторы

В обычных литий-ионных аккумуляторах в качестве среды для переноса заряженных частиц между электродами используется жидкий легковоспламеняющийся электролит, постепенно приводящий к деградации аккумулятора.

Этого недостатка лишены твердотельные литий-ионные аккумуляторы, которые сегодня считаются одними из самых перспективных. В частности, разработчики Toyota опубликовали научную работу, в которой описали свои эксперименты с сульфидными сверхионными проводниками. Если у них всё получится, то будут созданы аккумуляторы на уровне суперконденсаторов — они станут полностью заряжаться или разряжаться всего за семь минут. Идеальный вариант для электромобилей. А благодаря твердотельной структуре такие аккумуляторы будут гораздо стабильнее и безопаснее современных литий-ионных. Расширится и их рабочий температурный диапазон — от –30 до +100 градусов по Цельсию.

Учёные из Массачусетского технологического института в содружестве с Samsung также разработали твердотельные аккумуляторы, превосходящие по своим характеристикам современные литий-ионные. Они безопаснее, энергоёмкость выше на 20—30 %, да к тому же выдерживают сотни тысяч циклов перезарядки. Да ещё и не пожароопасны.

Топливные ячейки

Совершенствование топливных ячеек может привести к тому, что смартфоны мы будем заряжать раз в неделю, а дроны станут летать дольше часа. Учёные из Пхоханского университета науки и технологии (Южная Корея) создали ячейку, в которой объединили пористые элементы из нержавеющей стали с тонкоплёночным электролитом и электродами с минимальной теплоёмкостью. Конструкция оказалась надёжнее литий-ионных аккумуляторов и работает дольше них. Не исключено, что разработка будет внедрена в коммерческие продукты, в первую очередь в смартфоны Samsung.

Графеновые автомобильные аккумуляторы

Многие специалисты считают, что будущее — за графеновыми аккумуляторами. В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей.

Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг.

Микросуперконденсаторы, изготовленные с помощью лазера

Учёные из Университета Райса добились прогресса в разработке микросуперконденсаторов. Один из главных недостатков технологии — дороговизна изготовления, но применение лазера может привести к существенному удешевлению. Электроды для конденсаторов вырезаются лазером из пластикового листа, что многократно снижает трудоёмкость производства. Такие аккумуляторы могут заряжаться в 50 раз быстрее литий-ионных, а разряжаются медленнее используемых сегодня суперконденсаторов. К тому же они надёжны, в ходе экспериментов продолжали работать даже после 10 тыс. сгибаний.

Натрий-ионные аккумуляторы

Группа французских исследователей и компаний RS2E разработала натрий-ионные аккумуляторы для ноутбуков, в которых используется обычная соль. Принцип работы и процесс изготовления держатся в секрете. Ёмкость 6,5-сантиметрового аккумулятора — 90 Вт⋅ч/кг, что сравнимо с массовыми литий-ионными, но он выдерживает пока не более 2 тыс. циклов зарядки.

Пенные аккумуляторы

Другая тенденция в разработке технологий хранения энергии — создание трёхмерных структур. В частности, компания Prieto создала аккумулятор на основе субстрата пенометалла (меди). Здесь нет легковоспламеняющегося электролита, у такого аккумулятора большой ресурс, он быстрее заряжается, его плотность в пять раз выше, а также он дешевле и меньше современных аккумуляторов. В Prieto надеются сначала внедрить свою разработку в носимую электронику, но утверждают, что технологию можно будет распространить шире: использовать и в смартфонах, и даже в автомобилях.

Быстрозаряжаемый «наножелток» повышенной ёмкости

Ещё одна разработка Массачусетского технологического института — наночастицы для аккумуляторов: полая оболочка из диоксида титана, внутри которой (как желток в яйце) находится наполнитель из алюминиевой пудры, серной кислоты и оксисульфата титана. Размеры наполнителя могут меняться независимо от оболочки. Применение таких частиц позволило в три раза увеличить ёмкость современных аккумуляторов, а длительность полной зарядки снизилась до шести минут. Также снизилась скорость деградации аккумулятора. Вишенка на торте — дешевизна производства и простота масштабирования.

Алюминий-ионный аккумулятор сверхбыстрой зарядки

В Стэнфорде разработали алюминий-ионный аккумулятор, который полностью заряжается примерно за одну минуту. При этом сам аккумулятор обладает некоторой гибкостью. Главная проблема — удельная ёмкость примерно вдвое ниже, чем у литий-ионных аккумуляторов. Хотя, учитывая скорость зарядки, это не так критично.

Alfa battery — две недели на воде

Если компании Fuji Pigment удастся довести до ума свой алюминий-воздушный аккумулятор Alfa battery, то нас ждёт появление носителей энергии, ёмкость которых в 40 раз больше ёмкости литий-ионных. Более того, аккумулятор перезаряжается доливкой воды, простой или подсоленной. Как утверждают разработчики, на одном заряде Alfa сможет работать до двух недель. Возможно, сначала такие аккумуляторы появятся на электромобилях. Представьте себе автозаправку, на которую вы заезжаете за водой.

Аккумуляторы, которые можно сгибать, как бумагу

Компания Jenax создала гибкий аккумулятор J.Flex, похожий на плотную бумагу. Его даже можно складывать. К тому же он не боится воды и потому очень удобен для использования в одежде. Или представьте себе наручные часы с аккумулятором в виде ремешка. Эта технология позволит и уменьшить размер самих гаджетов, и увеличить носимый объём энергии. Другой сценарий — создание гибких складных смартфонов и планшетов. Нужен экран побольше? Просто разверните сложенный вдвое гаджет.

Как утверждают разработчики, тестовый образец выдерживает 200 тыс. складываний без потери ёмкости.

Эластичные аккумуляторы

Над созданием гибких носителей энергии работают во многих компаниях. А команда учёных из Университета штата Аризона пошла дальше и с помощью особой механической конструкции создала аккумулятор в виде эластичной ленты. Не исключено, что идея будет развита и позволит встраивать аккумуляторы в одежду.

Мочевой аккумулятор

В 2013 году Фонд Билла Гейтса вложился в продолжение исследований Bristol Robotic Laboratory по созданию аккумуляторов, работающих на моче. Весь цимес в использовании «микробных топливных ячеек»: в них содержатся микроорганизмы, расщепляющие мочу и вырабатывающие электричество. Кто знает, возможно, скоро поход в туалет будет не только потребностью, но и в буквальном смысле полезным занятием.

Ryden — углеродные аккумуляторы с быстрой зарядкой

В 2014 году компания Power Japan Plus сообщила о планах по выпуску аккумуляторов, в основе которых лежат углеродные материалы. Их можно было производить на том же оборудовании, что и литий-ионные. Углеродные аккумуляторы должны работать дольше и заряжаться в 20 раз быстрее литий-ионных. Был заявлен ресурс в 3 тыс. циклов зарядки.

Органический аккумулятор, почти даром

В Гарварде была создана технология органических аккумуляторов, стоимость производства которых составляла бы 27 долларов за кВт⋅ч. Это на 96 % дешевле аккумуляторов на основе металлов (порядка 700 долларов за кВт⋅ч). В изобретении применяются молекулы хинонов, практически идентичные тем, что содержатся в ревене. По эффективности органические аккумуляторы не уступают традиционным и могут без проблем масштабироваться до огромных размеров.

Просто добавь песка

Эта технология представляет собой модернизацию литий-ионных аккумуляторов. В Калифорнийском университете в Риверсайде вместо графитовых анодов использовали обожжённую смесь очищенного и измельчённого песка (читай — кварца) с солью и магнием. Это позволило повысить производительность обычных литий-ионных аккумуляторов и примерно втрое увеличить их срок службы.

Быстрозаряжаемые и долгоживущие

В Наньянском технологическом университете (Сингапур) разработали свою модификацию литий-ионного аккумулятора, который заряжается на 70 % за две минуты и служит в 10 раз дольше обычных литий-ионных. В нём анод изготовлен не из графита, а из гелеобразного вещества на основе диоксида титана — дешёвого и широко распространённого сырья.

Аккумуляторы с нанопорами

В Мэрилендском университете в Колледж-Парке создали нанопористую структуру, каждая ячейка которой работает как крохотный аккумулятор. Такой массив заряжается 12 минут, по ёмкости втрое превосходит литий-ионные аккумуляторы такого же размера и выдерживает около 1 тыс. циклов зарядки.

Генерирование электричества

Энергия кожи

Тут речь идёт не столько об аккумуляторах, сколько о способе получения энергии. Теоретически, используя энергию трения носимого устройства (часов, фитнес-трекера) о кожу, можно генерировать электричество. Если технологию удастся достаточно усовершенствовать, то в будущем в некоторых гаджетах аккумуляторы станут работать просто потому, что вы носите их на теле. Прототип такого наногенератора — золотая плёнка толщиной 50 нанометров, нанесённая на силиконовую подложку, содержащую тысячи крошечных ножек, которые увеличивают трение подложки о кожу. В результате возникает трибоэлектрический эффект.

uBeam — зарядка по воздуху

uBeam — любопытный концепт передачи энергии на мобильное устройство с помощью ультразвука. Зарядное устройство испускает ультразвуковые волны, которые улавливаются приёмником на гаджете и преобразуются в электричество. Судя по всему, в основе изобретения лежит пьезоэлектрический эффект: приёмник резонирует под действием ультразвука, и его колебания генерируют энергию.

Схожим путём пошли и учёные из Лондонского университета королевы Марии. Они создали прототип смартфона, который заряжается просто благодаря внешним шумам, в том числе от голосов людей.

StoreDot

Зарядное устройство StoreDot разработано стартапом, появившимся на базе Тель-Авивского университета. Лабораторный образец смог зарядить аккумулятор Samsung Galaxy 4 за 30 секунд. Сообщается, что устройство создано на базе органических полупроводников, изготовленных из пептидов. В конце 2017 года в продажу должен поступить карманный аккумулятор, способный заряжать смартфоны за пять минут.

Прозрачная солнечная панель

В Alcatel был разработан прототип прозрачной солнечной панели, которая помещается поверх экрана, так что телефон можно заряжать, просто положив на солнце. Конечно, концепт не идеален с точки зрения углов обзора и мощности зарядки. Но идея красивая.

Год спустя, в 2014-м, компания Tag Heuer анонсировала новую версию своего телефона для понтов Tag Heuer Meridiist Infinite, у которого между внешним стеклом и самим дисплеем должна была быть проложена прозрачная солнечная панель. Правда, непонятно, дошло ли дело до производства.

Будут ли литий-ионные аккумуляторы питать автомобили?

Переход к гибридным и электромобилям кажется естественным шагом в развитии автомобильных технологий. Аналитики не прогнозируют падение цен на нефть и бензин в ближайшее время, что фактически подталкивает производителей автомобилей к активному поиску следующего лучшего способа использования транспортных средств. Если недавние концептуальные автомобили, представленные крупными автопроизводителями, являются точными предсказателями, Литий-ионные батареи (Li-ion) могут стать той волшебной пулей.

Возьмем, к примеру, Chevrolet Volt . Это подключаемый гибридный концептуальный автомобиль General Motors, предназначенный для пробега на 40 миль (64,3 километра), полностью использует литий-ионные аккумуляторы. После этого небольшой бензиновый двигатель возьмет на себя еще 600 миль (965 километров). Это означает, что многие люди могут завершить свою ежедневную поездку на работу, не сжигая ни капли газа. Кроме того, к 2010 году компания планирует начать их массовый выпуск.

И Chevrolet не одинок в трендах литий-ионных аккумуляторов.Jeep, Cadillac, Dodge, Land Rover, Chrysler и Saturn анонсировали концептуальные автомобили 2008 года, оснащенные литий-ионными аккумуляторами для более экологичного вождения [источник: Mahoney].

Почему вообще это заискивание перед литий-ионными батареями? Toyota Prius и два новых гибрида, представленные компанией в июне 2008 года, используют никель-металлогидридную батарею. Согласно последним стандартам EPA, Prius в сумме получает 46 миль на галлон — не говоря уже о том, что он продавался как горячие пирожки. [источник: fueleconomy.г].

Но с точки зрения энергии литий-ионные аккумуляторы просто обладают большей мощностью. Литий-ионные аккумуляторы хранят больше энергии в небольших помещениях, чем более традиционные свинцово-кислотные и никель-металлогидридные. Литий обладает наибольшей плотностью энергии и электрохимическим потенциалом из всех металлов, что придает ему стойкость [источник: Бухманн]. Никель-металл-гидридные батареи в гибридных автомобилях на дороге также тяжелые, что ограничивает их потенциал, в то время как литий-ионные батареи могут увеличивать скорость, не утяжеляя автомобиль.Благодаря этому свойству вы можете найти их уменьшенные версии во многих продуктах бытовой электроники, таких как ноутбуки, сотовые телефоны и плееры iPod.

Но есть несколько препятствий на пути к тому, чтобы литий-ионные аккумуляторы стали бензином завтрашнего дня, а именно: безопасность, стоимость и долговечность. Мы рассмотрим вопросы безопасности на следующей странице.

,

литий-ионные автомобильные аккумуляторы Аккумулятор для мотоциклов 48 В 20 Ач литий-ионные аккумуляторные батареи для мотоциклов, автомобилей, HEV Солнечная батарея для Sanyo cell | аккумулятор | аккумулятор 48 В аккумулятор 48 В 20ач

9 Пиковый ток разряда

900

4.0 кг

Модель аккумулятора

4820

Напряжение

48V

Вместимость:

20AH

Тип:

3.7v 3C SANYO 3C 3500MAH 18650 ячейка

Сопротивление источника

40

Заряд

Способ зарядки

CC / CV

03 Стандартный Ток заряда

2A

Максимальный ток заряда

5A

Напряжение отключения заряда

54.6V

Защита от перезарядки элемента Напряжение

4,2 В / CELL

Разряд

Постоянный ток разряда

30Amp3

100 Ампер (можно настроить)

Напряжение избыточного разряда элемента

2.8 В / элемент

Напряжение отключения разряда

36,4 В

Срок службы

1000 раз

Тест безопасности

Нет, первый, взрыв

Испытание на безопасность перегрузки

Испытание на безопасность при раздавливании

Испытание на безопасность иглы

130 C Испытание на безопасность при высоких температурах

Вес

Размер

70 * 120 * 260 мм (можно настроить)

Подходит для мотора

Меньше 1400 Вт

Рабочая температура

Рабочая температура

—45C

-20-C — 65C

Сохранение заряда

> 95%

Сертификат

CE, UL, ROSH, UN38.3, паспорт безопасности материалов

Приложение

Электронный велосипед, электронный мотоцикл, электросамокат, ИБП, велосипед, электровелосипед, гольф-кар,

Гарантия

Один год

Составные части:

1. 48V 20AH 1400w литиевая батарея в корпусе из ПВХ

2.30A Встроенная плата BMS

3. Зарядное устройство (54,6 В, 2,0 А, 100–240 В, 50/60 Гц, США, Великобритания, ЕС, AU PLUG)

1. Элементы — элементы класса A для обеспечения высокой и полной емкости аккумуляторов

2. Защита — Двойные микросхемы IC, защищающие от короткого замыкания, защиты от перезарядки, защиты от перегрузки по току, защиты от перегрузки

3.Тип композиции: технология впрыска, чтобы сделать аккумулятор более стабильным.

4. Сертификаты: CE, UL, FCC, RoHS, ISO9001

5. Длительный жизненный цикл, отсутствие памяти, экологичность.

Наша BMS состоит из Master BMS Circuitry (мы назвали BMU), Slave BMS Circuitry (мы интегрируем ее в наш батарейный модуль

) и контактора. Помимо основных функций, таких как перезарядка / разрядка, перегрузка по току, короткое замыкание

, превышение температуры и балансировка, наша BMS обладает следующими функциями:

1.Архитектура Master-Slave делает систему гибкой;

2. Двухуровневое предупреждение упрощает обслуживание;

3. CAN2.0 и электронные компоненты промышленного уровня делают систему надежной;

4. Контактор делает возможной высокоскоростной заряд и разряд;

5. Периодические измерения изоляции делают возможным безопасность персонала;

6. Хост может легко управлять системой;

Это может быть хорошо использовано в электрических транспортных средствах (EV, HEV, PHEV, EREV, LEV, электромобиль, патрульная машина, прогулочный автомобиль, электрический мотоцикл, электронный велосипед, электрический велосипед / велосипед, электрический скутер, электрическая инвалидная коляска, тележка для гольфа, вилочный погрузчик и т. д.) и системы хранения энергии (солнечная / ветровая / автономная система, ИБП, базовая станция электросвязи, электроинструменты и т. д.).

9000 Shenz0003

Co. Прошло более 14 лет с тех пор, как Shenzhen Riskcell Technology Co., Ltd. стала одним из ведущих производителей литиевых батарей в Китае и входит в пятерку крупнейших предприятий по производству литиевых батарей в стране.Чтобы сохранить свой лидирующий статус, B&K инвестировала значительные средства в исследования и разработки с командами известных инженеров-химиков, которые создали более 40 национальных технологических патентов для B&K в области усовершенствованного дизайна ячеек.

Обладая ежемесячной производительностью более 15 миллионов ячеек, компания входит в число ведущих производителей в Китае и имеет глобальную дистрибьюторскую сеть, охватывающую все уголки мира. Планируемый индустриальный парк B&K имеет площадь 130 000 квадратных метров.В нынешнем комплексе работает более 1800 сотрудников. Компания известна двумя известными брендами лития; B&K и Encel. В рамках этих линий компания предлагает четыре серии продуктов; призматические, полимерные, традиционные цилиндрические и упаковочные. Обе линии имеют хорошие каналы сбыта в Европе, Северной Америке, Южной Америке, на Ближнем Востоке и в Юго-Восточной Азии.

Последние усилия B&K Battery направлены на развитие рынков высокопроизводительных и емких продуктов, таких как смартфоны, планшетные ПК, хранение критически важной энергии и партнерские отношения с солнечной и ветряной энергетикой.Целое специализированное подразделение предлагает усовершенствованный дизайн упаковки, разработку BMS и спецификации ячеек для удовлетворения самых взыскательных требований клиентов.

Стремясь не только к собственному росту и развитию, эти принципы были созданы Китайской промышленной ассоциацией литиевых батарей (LBIA), которая проводит один из самых престижных ежегодных технических форумов в мире. China Lithium Top Forum объединяет ведущих инженеров, технических специалистов по продуктам и ведущих профессоров в области аккумуляторных технологий.Немногие компании могут претендовать на уровень достижений в качестве интегрированного поставщика решений для перезаряжаемой энергии на литиевой мировой арене. Поскольку B&K Rechargeable Battery продолжает уделять внимание передовым конструкциям элементов, производственным линиям для производства элементов высочайшего качества и совершенствованию отраслевого образования, это поможет вывести своих клиентов и их продукты на новый уровень.

Мы стремимся к 5 звездам

Отличное обслуживание — наша цель, мы стремимся предложить 5 звезд производительности во всех областях нашего бизнеса и хотим быть уверены, что вы довольны продуктами и услугами получили.Мы ценим каждого клиента и будем работать над тем, чтобы вы остались довольны. Пожалуйста, найдите время, чтобы связаться с нами, чтобы мы могли узнать от вас, как улучшить наш сервис.

Вы можете связаться с нами, используя вкладку «Задать вопрос продавцу», расположенную в каждом шаблоне аукциона в правом верхнем углу страницы.

.

Информация о литиево-ионных батареях — Battery University

Лишь в начале 1970-х годов стали доступны первые неперезаряжаемые литиевые батареи. Попытки разработать перезаряжаемые литиевые батареи последовали в 1980-х годах, но эти попытки не увенчались успехом из-за нестабильности металлического лития, используемого в качестве анодного материала.

Литий — самый легкий из всех металлов, имеет наибольший электрохимический потенциал и обеспечивает наибольшую удельную энергию на единицу веса.Перезаряжаемые батареи с металлическим литием на аноде (отрицательные электроды) могут обеспечивать чрезвычайно высокую плотность энергии, однако циклическое переключение приводит к образованию нежелательных дендритов на аноде, которые могут проникнуть в сепаратор и вызвать короткое замыкание. Температура элемента быстро возрастет и приблизится к температуре плавления лития, что приведет к тепловому выходу из строя, также известному как «выброс пламени».

Неустойчивость, присущая металлическому литию, особенно во время зарядки, сместила исследования в сторону неметаллического раствора с использованием ионов лития .Хотя литий-ионный аккумулятор имеет меньшую удельную энергию, чем литий-металлический, он безопасен при условии, что производители элементов и комплектующие аккумуляторных батарей соблюдают меры безопасности по поддержанию напряжения и тока на безопасном уровне. В 1991 году Sony выпустила на рынок первую литий-ионную батарею, и сегодня эта химия стала наиболее многообещающей и быстрорастущей на рынке. Тем временем продолжаются исследования по разработке безопасной металлической литиевой батареи в надежде сделать ее безопасной.

В 1994 году производство литий-ионного цилиндрического элемента 18650 * емкостью 1100 мАч стоило более 10 долларов.В 2001 году цена упала до 2 долларов, а емкость выросла до 1900 мАч. Сегодня элементы 18650 с высокой плотностью энергии обеспечивают более 3000 мАч, и их стоимость еще больше снизилась. Снижение затрат, увеличение удельной энергии и отсутствие токсичных материалов проложили путь к тому, чтобы сделать литий-ионный аккумулятор универсально приемлемым аккумулятором для портативного применения, сначала в легкой промышленности, а теперь все чаще и в тяжелой промышленности, включая электрические силовые агрегаты для транспортных средств.

В 2009 году примерно 38 процентов всех вырученных аккумуляторов были литий-ионными.Литий-ионная аккумуляторная батарея не требует особого обслуживания, чего не могут добиться многие другие химические компании. Батарея не имеет памяти и не требует упражнений, чтобы поддерживать форму. Саморазряд меньше половины по сравнению с системами на основе никеля. Благодаря этому литий-ионные аккумуляторы хорошо подходят для измерения уровня топлива. Номинальное напряжение ячеек 3,6 В может питать сотовые телефоны и цифровые камеры напрямую, предлагая упрощения и снижение затрат по сравнению с многоячеечными конструкциями. Недостатком была высокая цена, но она нивелируется, особенно на потребительском рынке.

Рис. 1. Поток ионов в литий-ионной батарее
Когда элемент заряжается и разряжается, ионы перемещаются между катодом (положительный электрод) и анодом (отрицательный электрод). При разряде анод подвергается окислению или потере электронов, а катод — уменьшению или увеличению количества электронов. Заряд переворачивает движение.

Все материалы в батарее обладают теоретической удельной энергией, и ключ к высокой емкости и превосходной подаче энергии лежит, прежде всего, в катоде .Последние 10 лет или около того катод характеризует литий-ионную батарею. Обычный катодный материал — это оксид лития-кобальта (или кобальтат лития), оксид лития-марганца (также известный как шпинель или манганат лития), фосфат лития-железа, , а также литий никель-марганец-кобальт (или ) ** и Литий Никель Кобальт Оксид алюминия (или NCA).

В оригинальной литий-ионной батарее Sony в качестве анода (угольного продукта) использовался кокс, а с 1997 года в большинстве литий-ионных аккумуляторов используется графит для получения более пологой кривой разряда.Разработки также происходят в отношении анода, и в настоящее время испытываются некоторые добавки, в том числе сплавы на основе кремния. Кремний позволяет увеличить удельную энергию на 20–30 процентов за счет более низких токов нагрузки и сокращения срока службы. Наноструктурированный титанат лития в качестве анодной добавки показывает многообещающий срок службы, хорошую нагрузочную способность, отличные низкотемпературные характеристики и превосходную безопасность, но при этом удельная энергия невысока.

Смешивание материалов катода и анода позволяет производителям усилить внутренние качества; однако улучшение в одной области может поставить под угрозу что-то другое.Производители аккумуляторов могут, например, оптимизировать удельную энергию (емкость) для увеличения времени работы, увеличить удельную мощность для улучшения токовой нагрузки, продлить срок службы для увеличения срока службы и повысить безопасность при интенсивном воздействии окружающей среды, но недостатком более высокой емкости является снижение нагрузки ; Оптимизация работы с большими токами снижает удельную энергию и делает его прочным элементом для длительного срока службы и повышенной безопасности, увеличивает размер батареи и увеличивает стоимость из-за более толстого разделителя.Сепаратор считается самой дорогой частью аккумулятора.

В таблице 2 приведены характеристики литий-ионных аккумуляторов с различным материалом катода. Таблица ограничивает химический состав четырьмя наиболее часто используемыми литий-ионными системами и применяет краткую форму для их описания. NMC означает никель-марганец-кобальт, химический состав, который является относительно новым и может быть адаптирован для большой емкости или большой токовой нагрузки. Литий-ионный полимер не упоминается, поскольку это не уникальный химический состав, а отличается только конструкцией.Литий-полимер может быть изготовлен с различным химическим составом, и наиболее широко используемый формат — это литий-кобальт.

.

Автомобильные литий-ионные батареи — разработки для легковых автомобилей

Johnson Matthey Technol. Ред. , 2015, 59 , (1), 4

1. Введение

Литий-ионные элементы (, рис. 1 ) (1), в их наиболее распространенной форме, состоят из графитового анода, литиевого катод из оксида металла и электролит из литиевой соли и органического растворителя. Литий — хороший выбор для электрохимической ячейки из-за его большого стандартного электродного потенциала (–3.04 В), что приводит к высокому рабочему напряжению (что способствует увеличению мощности и энергии) и к тому, что это металл с самой низкой плотностью (что снижает вес).

Рис. 1.

Схематический вид литий-ионного элемента (1)

Конструкция типичного цилиндрического элемента показана на Рис. 2 , а Рис. 3 показывает типичный карманный аккумулятор. Такие элементы являются относительно легким и небольшим источником энергии и в настоящее время производятся в очень больших количествах (> 1 миллиарда элементов в год) (2).В автомобильной промышленности литий-ионный аккумулятор состоит из десятков и тысяч отдельных ячеек, собранных вместе для обеспечения необходимого напряжения, мощности и энергии. Отдельные элементы обычно монтируются в несколько модулей, которые затем собираются в полный аккумулятор, как показано на рис. 4 .

Рис. 2.

Внутренняя конструкция типичной цилиндрической ячейки (1)

Рис. 3.

Внутренняя конструкция типичной карманной ячейки (1)

Рис.4.

CAD разобранный аккумуляторный модуль, собранный модуль и весь аккумуляторный блок (1)

Многие страны в настоящее время установили обязательные целевые показатели выбросов углекислого газа для автомобилей, например, в Европе требования для среднего парка CO 2 выбросов из 130 г км –1 к 2015 г. и 95 г км –1 к 2021 г. (3). В разделе 2 этой статьи будет показано, что с помощью (литий-ионной) батареи можно значительно снизить выбросы CO 2 автомобиля.По этой причине в настоящее время в автомобилях используется больше литий-ионных аккумуляторов.

Данная статья имеет следующую структуру. В разделе 2 представлен ряд применений литий-ионных аккумуляторов в легковых автомобилях и перечислены их основные требования. В разделе 3 дается краткий обзор возможностей ряда литий-ионных химических соединений, используемых в настоящее время для автомобильных приложений, а в разделе 4 будут сравниваться требования (из раздела 2) с возможностями, перечисленными в разделе 3.В Разделе 5 будут рассмотрены будущие разработки, а в Разделе 6 представлены некоторые выводы.

2. Применение литий-ионных аккумуляторов в автомобильной промышленности

Аккумуляторы в легковых автомобилях могут применяться в различных областях (4). Те, которые будут здесь рассмотрены, были выбраны либо потому, что они уже используют литий-ионные батареи, либо потому, что они потенциально могут сделать это в будущем. Обратите внимание, что существует ряд стандартных автомобильных требований, которым должны соответствовать все литий-ионные аккумуляторы, используемые в автомобилях: они включают срок службы (обычно 8–15 лет), температурный диапазон (от –40 ° C до как минимум + 60 ° C. , в идеале 80 ° C) и виброустойчивость (не менее 4.5 среднеквадратичное ускорение (grms)) (5). Теперь будет кратко описано каждое приложение.

2.1 Пусковое освещение, Зажигание

Пусковое освещение, зажигание (SLI) — это «автомобильный аккумулятор», который был почти в каждом автомобиле в течение последних 100 лет. Обычно это называется «аккумулятор на 12 В», но его нормальное напряжение (при использовании в автомобиле и при зарядке от генератора переменного тока) ближе к 14 В. Практически во всех современных серийных автомобилях это свинцово-кислотный аккумулятор, но есть Есть несколько автомобилей, которые используют литий-ионный аккумулятор либо в стандартной комплектации (например, McLaren P1), либо в качестве опции (например, некоторые модели Porsche).В Porsche Boxster Spyder литий-ионный аккумулятор стоит 1700 долларов США и имеет тот же форм-фактор и точки крепления, что и стандартный свинцово-кислотный аккумулятор, но весит всего 6 кг, что на 10 кг легче, чем свинцово-кислотный вариант. Следует отметить, что Porsche поставляет обычные свинцово-кислотные батареи, а также литий-ионные для использования при низких температурах, когда литий-ионный аккумулятор не может обеспечить достаточную мощность для запуска двигателя (см. Раздел 3).

2.2 Остановка на холостом ходу

Это система, которая сейчас установлена ​​на большинстве европейских транспортных средств, которая выключает двигатель внутреннего сгорания, когда автомобиль неподвижен, и перезапускает его, когда вы собираетесь трогаться с места (4).Он предлагает около 5% экономии топлива при ориентировочной стоимости системы около 350 долларов США (4), что делает его привлекательным решением для производителей оригинального оборудования (OEM), которые стремятся соответствовать европейским ограничениям CO 2 2015 года. Требования к батарее для этого приложения очень похожи на требования к батарее SLI, но более частый запуск и остановка двигателя требует более длительного срока службы. Подавляющее большинство батарей для этого применения по-прежнему свинцово-кислотные, но используется ряд других вариантов, включая ультраконденсаторы и литий-ионные батареи, которые впервые были использованы в 2002 году на вариаторе Toyota Vitz CVT, который, насколько известно автору, был первым серийным автомобилем. использовать литий-ионный аккумулятор.

Многие системы остановки на холостом ходу также интеллектуально управляют генератором переменного тока транспортного средства, например, используя его для выработки максимальной мощности при замедлении транспортного средства (что дает ограниченную степень возможности рекуперативного торможения), и эти системы часто называют микрогибридами.

2.3 Мягкий гибрид

В мягком гибриде электрическая энергия используется для дополнения энергии от двигателя внутреннего сгорания. Используя подходящую систему управления, чтобы решить, как сочетать эти два источника энергии, можно получить значительную экономию топлива (обычно 10–15%, но на некоторых демонстрационных автомобилях было показано до 30%) для умеренного увеличения мощности системы. стоимость (4).Аккумуляторы для этого приложения требуют лишь небольшого количества энергии и энергии. Большинство аккумуляторов для этого применения в настоящее время представляют собой никель-металлогидридные (NiMH) батареи, при этом литий-ионные батареи впервые были использованы в 2010 году для гибрида Mercedes S400. Поскольку эта статья посвящена литий-ионным батареям, никель-металлгидридные батареи (более старая технология, предлагающая более низкую плотность энергии, чем литий-ионные) не будут здесь подробно рассматриваться.

Обратите внимание, что вскоре ожидается, что количество производимых мягких гибридов значительно увеличится из-за использования систем 48 В в автомобиле.Этот сдвиг обусловлен требованиями европейского флота 2020 CO 2 (3). Использование 48 В было первоначально предложено в 2011 году Audi, BMW, Daimler, Porsche и Volkswagen (6) и привело к стандарту LV 148 (7). Audi недавно заявила, что они ожидают, что такие системы будут производиться в течение следующих двух лет (8), и ожидается, что все системы на 48 В будут основаны на литий-ионных батареях.

Следует также отметить, что большинство автомобилей на топливных элементах также будут гибридами (4). Например, Toyota недавно объявила, что в начале 2015 года начнет продажи седана на топливных элементах, и это мягкий гибрид, использующий небольшую батарею в дополнение к топливному элементу и повышающий общую эффективность автомобиля (9).

2.4 Полный гибрид

В случае полного гибрида подход аналогичен подходу к мягкому гибриду, но электрическая мощность и запасенная энергия теперь достаточно высоки, чтобы приводить автомобиль в действие исключительно за счет электроэнергии. Доступная энергия батареи обычно ограничивает дальность действия в этом режиме до нескольких километров. Примером такого автомобиля является Toyota Prius (хотя в настоящее время он использует аккумуляторную батарею NiMH), которая на сегодняшний день является самым успешным гибридным автомобилем, проданным на сегодняшний день. Он имеет запас хода около 1 мили в режиме электромобиля (EV).Снижение расхода топлива в полном гибриде обычно составляет 30-40%, например, на Toyota Yaris 2014 года бензин 1,33 (98 л.с. / 73 кВт) производит 114 г / км –1 выбросов CO 2 , в то время как гибрид (также 98 л.с. / 73 кВт) достигает 75 г / км –1 , снижение на 34%.

Аккумуляторы для этого приложения должны обеспечивать большую мощность (чтобы действовать как единственный источник энергии в автомобиле) и больше энергии, чем для умеренного гибридного приложения. Большинство применений (по объему) по-прежнему никель-металлгидридные, но в настоящее время значительное количество автомобилей основаны на литий-ионных батареях, включая BMW Active Hybrid 3, который может ездить на двоих.5 миль со скоростью до 37 миль в час только на электроэнергии. Гибридный электромобиль (HEV) — это фраза, которая использовалась для описания мягких гибридных и полногибридных транспортных средств и даже применялась к некоторым транспортным средствам с немногим большим, чем системы остановки холостого хода (микрогибриды).

2.5 Подключаемый гибридный электромобиль

Подключаемый гибридный электромобиль (PHEV) можно рассматривать как полный гибрид с возможностью зарядки аккумулятора от сети. Транспортное средство спроектировано таким образом, чтобы изначально предпочтительно использовать электрическую энергию от его последнего заряда до тех пор, пока он не будет исчерпан, после чего он ведет себя как полностью гибридный автомобиль.Таким образом, энергия, полученная при зарядке от сети, заменяет часть энергии, которая потребовалась бы от жидкого топлива (бензина или дизельного топлива), дополнительно снижая расход топлива (и, следовательно, выбросы CO 2 из выхлопной трубы). VW XL1 — это PHEV, который предлагает 313 миль на галлон и 24 г / км –1 CO 2 , но Vauxhall Ampera (GM Volt) и Toyota Prius PHEV (обратите внимание, Toyota Prius PHEV — это автомобиль, отличный от стандартного «Toyota Prius, который является полностью гибридным автомобилем», являются более доступными вариантами.Все используют литий-ионные батареи. Энергия, требуемая от аккумулятора, аналогична мощности, требуемой в полном гибриде, но необходимо сохранить больше энергии, чтобы усилия по подзарядке от сети были оправданы.

Для целей этого документа электромобиль с увеличенным запасом хода (REEV) будет считаться типом PHEV.

2.6 Электромобиль

Единственным источником энергии электромобиля является аккумулятор. Примером такого типа автомобилей является Nissan Leaf. У электромобиля нулевые выбросы из выхлопной трубы, хотя, по оценкам, у Leaf их испускается 66.83 г км –1 CO 2 в Великобритании на основе CO 2 , вырабатываемого электричеством, используемым для его заправки. Мощность, требуемая от аккумулятора электромобиля, такая же, как и для PHEV (оба должны иметь возможность приводить в действие автомобиль), но в электромобиле используется столько энергии, сколько возможно, чтобы обеспечить разумный диапазон (обычно ~ 100 миль). Это большое энергопотребление объясняет требование «низкой стоимости» (в долларах / кВтч) для электромобилей в , Таблица I , поскольку стоимость батареи необходимо сравнивать с обычным топливным баком (~ 100 евро или ~ 130 долларов США).

Таблица I

Типичные применения литий-ионных аккумуляторов в легковых автомобилях

Мягкий гибрид –30

EV 300157 Срок службы с длительным циклом

PH

0 из перечисленных выше приложений обобщены в Таблице I .Показаны типичные свойства и требования технологии батарей для каждого приложения. Данные о мощности и энергии в Таблица I также можно просмотреть в виде диаграммы, как показано на Рисунок 5 .

Рис. 5.

Требования к питанию и энергии для различных аккумуляторных батарей легковых автомобилей

3. Литий-ионный химический состав

Литий-ионные элементы в их наиболее распространенной форме состоят из графитового анода и металлического лития оксидный катод и электролит из литиевой соли и органического растворителя.Хотя основной формат остается постоянным для всех литий-ионных элементов, подробный химический состав (например, катод и / или анод) может быть изменен, изменяя свойства элемента. Целью данной статьи не является дать подробное объяснение производства различных клеток или их химического состава, поскольку это хорошо освещено в другом месте (см., Например, (1, 2, 10)).

Основные литий-ионные химические соединения, используемые в автомобильной промышленности, приведены в Таблице II (1). Во всех случаях анодом является графит, за исключением шестой позиции, в которой анодом является титанат.

Таблица II
Сводка основных литий-ионных вариантов
Приложение Типичное напряжение (я), В Типичные уровни мощности, кВт Типичная энергия , кВтч Самый распространенный тип батарей на сегодняшний день Особые требования
SLI 14 3 0.7 Свинцово-кислотный Запуск на холоду
Остановка на холостом ходу 14 3 0,7 Свинцово-кислотный Запуск на холоде
0,3 NiMH Длительный срок службы
Полно-гибридный 300–600 60 1–2,5 NiMH
60 4–10 Li-ion Длительный срок службы
EV 300–600 60 15+ Li-ion Низкая стоимость

9015

215

прод.

Плотность энергии на уровне элементов, Втч кг –1 Плотность энергии на уровне элементов, Втч л –1 Срок службы, 100% DoD Ориентировочная цена, долл. США / ч –1 Мощность C-rate Начало безопасного теплового разгона, ° C Потенциал, В Диапазон температур окружающей среды, ° С
LiCoO 2 170–185 450–490 500 0.31–0,46 1 C 170 3,6 –20 до 60
LiFePO 4 (EV / PHEV) 90–125 130–300 2000 5 C продолжение 10 C импульсный 270 3,2 от –20 до 60
LiFePO 4 (HEV) 80–108 200–240 2000 0,4–1,0 30 C продолжение

50 C, импульсный 270 3,2 –20 до 60
NCM (HEV) 150 270–290 1500 0,5–0,9 20 C продолж. 40157 3,7 от –20 до 60
NCM (EV / PHEV) 155–190 330–365 1500 0,5–0,9 1 C продолж. 5 C импульс 215 3,7 –20 до 60
Титанат vs. NCM / LMO 65–100 118–200 12,000 1–1,7 10 C продолж. 20 C импульсный Не восприимчивый 2,5 от –50 до 75
Марганцевая шпинель (EV / PHEV) 90–110 280 > 1000 0,45–0,55 255 3,8 –20 до 50

Эту таблицу можно резюмировать с точки зрения ключевых параметров, которые требуются для коммерческого применения этих технологий аккумуляторов в легковых автомобилях, как в Таблице III ниже.Обратите внимание, что цена не была включена в эту таблицу, поскольку все диапазоны фактически перекрываются, за исключением более дорогой системы, содержащей титанат.

Хотя все эти химические составы элементов использовались в легковых автомобилях и, следовательно, могут быть достаточно безопасными, температура, при которой начинается тепловой разгон, используется здесь для иллюстрации различий между химическими составами — чем выше эта температура, тем безопаснее химический состав. быть. Срок службы приведен в Таблице II с точки зрения продолжительности цикла, в то время как рейтинг в Таблице III также может включать календарный срок.

Таблица III
Ключевые параметры литий-ионных химических соединений

4

Параметр Химические вещества с наиболее высокими показателями Химические вещества с минимальными характеристиками
LiCoO 2
Мощность LiFePO 4 LiCoO 2
Энергия LiCoO 2

8 90P

LiCoO 2

8 90P

Титанат, LiFePO 4 LiCoO 2

Обратите внимание, что химический состав, обеспечивающий лучшую мощность (фосфат лития-железа (LiFePO 4 )), является наихудшим для энергии.При выборе химического состава кандидатов для применения необходимо учитывать как мощность, так и энергию, и эта идея будет дополнительно исследована в Разделе 4.

Последний параметр для рассмотрения — низкотемпературные характеристики, и это лучше всего показано на графике ( Рисунок 6 , который основана на данных из (11) с добавлением литий-ионных аккумуляторов автором на основе измерений автомобильного литий-ионного элемента LiFePO 4 ).

Рис. 6.

Низкотемпературные характеристики выбранных аккумуляторных батарей

Этот график показывает, что технология свинцово-кислотных аккумуляторов с регулируемым клапаном (VRLA) обеспечивает значительно более высокую мощность при низких температурах и поэтому лучше подходит для холодного запуска. (которые требуют возможности проворачивать двигатель до –40 ° C).

4. Литий-ионный для различных приложений

Один из способов оценить пригодность литий-ионного аккумулятора для различных приложений — сравнить соотношение мощность: энергия для элементов и для приложений, как показано на рис. 7 . Здесь желтыми линиями показаны отношения мощность: энергия для различных химикатов (из , таблица II, ), а точками показаны требования для каждого из приложений (, рисунок 5, ). Линии, ближайшие к точкам, вероятно, лучше всего подходят для приложения с точки зрения мощности и энергии, поскольку химические соединения с линиями, расположенными далеко от точек, будут иметь значительный избыток мощности или энергии сверх требований.Это может сделать их более дорогим решением (с точки зрения стоимости, веса и объема), чем решения с линиями, близкими к точке.

Рис. 7.

Мощность, энергия и возможности различных химикатов

Видно, что есть хорошие совпадения для мягкого и полного гибрида и PHEV, но не особенно подходящего для требований EV.

Это означает, что компаниям, предлагающим различные типы гибридных транспортных средств, обычно необходимо выбирать несколько химикатов (что также обычно означает наличие нескольких поставщиков).Например, BMW использует элементы A123 LiFePO 4 в своих гибридах, в то время как она использует Samsung SDI (никель-марганец-кобальт (NMC)) для своих автомобилей EV и PHEV (12), оба из которых можно рассматривать как разумный выбор на основе на Рисунок 3 . Однако в отрасли нет консенсуса, например, в то время как BMW выбрала NMC для своих электромобилей, Honda использует химический состав титаната в своем Fit EV, а Renault использует шпинель литий-оксид марганца (LMO) в ZOE EV (13).

Следует отметить, что, хотя литий-ионные батареи используются в серийных автомобилях, работа при низких температурах (см. Раздел 3), срок службы (особенно календарный срок), температурный диапазон, безопасность и стоимость — все это области, которые в идеале нуждаются в улучшении. и эти проблемы все еще остаются после многих лет исследований и разработок (10).Некоторый прогресс был достигнут, например, количество аккумуляторных батарей увеличилось с 80 Втч кг –1 в Mitsubishi iMiEV (запущен в 2009 г.) и Nissan Leaf (выпущен в 2010 г.) до 97 Втч кг –1 в новом Kia Soul. EV (запущен в мае 2014 г.) (14), что является средним (сложным) улучшением на 4% в год. Отчасти это связано с большими временными рамками автомобильной промышленности (обычно от выбора детали до серийного производства — пять или более лет), но также с необходимостью улучшений без отрицательного влияния на другие параметры.

5. Будущие разработки

В области литий-ионных аккумуляторов ведется много исследований. Обзор литиевых батарей (2) датируется 2009 годом, но это все еще полезный обзор, и многие из обсуждаемых в нем исследовательских тем еще не нашли широкого применения в автомобильной промышленности. Теоретическая модель, созданная в Университете Райса и Ливерморской национальной лаборатории им. Лоуренса, которая предсказывает, как углеродные компоненты будут работать в качестве электродов (15), также может принести значительную пользу будущим разработкам литий-ионных элементов.

Недавний обзор, в котором основное внимание уделяется энергии и стоимости (и наиболее актуален для электромобилей) (16), предполагает, что литий-ионный химический состав улучшится, вероятно, не более чем на 30% с точки зрения энергии на единицу веса, и предлагает диапазон потенциальных заменяющих химикатов. Однако следует помнить, что автомобильный аккумулятор — это гораздо больше, чем просто химия, поскольку сами элементы должны быть упакованы в пакет или банку, а затем сотни или, возможно, тысячи этих элементов должны быть упакованы в автомобиле вместе с оборудование для терморегулирования и электронного контроля.Типичная автомобильная аккумуляторная батарея сегодня достигает 82 Вт · ч кг –1 (например, Nissan Leaf), что значительно ниже, чем можно получить от одних элементов.

Недавно были разработаны прототипы аккумуляторных блоков со значительно более высокой плотностью энергии. Например, программа SmartBatt (17) недавно продемонстрировала аккумуляторный блок для электромобилей емкостью 148 Вт · ч, кг –1 , при этом он отвечает всем другим автомобильным требованиям, этот блок был показан как CAD на рис. 4 , а собранный блок показан на рис. 8 .Это было достигнуто за счет сочетания 1408 литий-ионных элементов с относительно высокой энергией (каждый по 181 Вт · ч, кг –1 ) с инновационными материалами (включая алюминиевый гибридный пенопластовый сэндвич-материал) и новейшими технологиями (включая большое количество краш-тестов. моделирования для оптимизации дизайна).

Рис. 8.

Таблица IV дает разбивку по весу блока SmartBatt. Прирост энергии на единицу веса на 85%, полученный с помощью пакета SmartBatt, намного превышает долгосрочные прогнозы 30% -ного улучшения энергии на единицу веса за счет улучшения химического состава литий-ионных аккумуляторов, и вместе они предполагают 100% -ный прирост энергии на единицу веса (примерно до 160 Вт · ч кг –1 ) может быть возможным на уровне упаковки для электромобилей.

Таблица IV
SmartBatt Вес в разбивке
Компонент Масса, кг Доля,%
Корпус без корпуса 8,5128

Корпус Ячейки 16,6 10,7
Ячейки 125,3 80,6
Электрические компоненты 2.1 1,4
Электрические соединения 2,9 1,9
ИТОГО 155,4

6. Выводы

разные требования для каждого. Это показало, что, хотя аккумуляторные блоки на основе литий-ионных аккумуляторов могут использоваться во всех основных приложениях для аккумуляторов легковых автомобилей, они лучше всего подходят для использования в приложениях PHEV и EV и наименее подходят для приложений SLI.Было показано, что даже для приложений, в которых используются литий-ионные ионные аккумуляторы, разные производители автомобилей выбрали разные химические составы для одного и того же приложения, исходя из разных интерпретаций компромиссов между характеристиками химического состава и требованиями конкретного приложения.

Было заявлено, что новый литий-ионный химический состав предлагает ограниченный потенциал для улучшения (~ 30% в пересчете на Вт · ч · кг –1 ), что привело к значительным исследованиям в химическом составе, не основанном на литий-ионных компонентах, которые обещают значительно более высокий выигрыш (16).Однако здесь показано, что, особенно для аккумуляторных блоков EV, значительное увеличение веса может происходить из-за общей конструкции аккумуляторного блока, и это вместе с улучшенным химическим составом предполагает, что удвоение энергии на единицу веса для аккумуляторных блоков EV возможно в относительно недалекое будущее.

Благодарности

Автор благодарит анонимных рецензентов и редактора за их конструктивные комментарии, а также Джонсона Матти за разрешение опубликовать эту статью.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *