Двигатель с неразделенными камерами сгорания что это: Классификация камер сгорания дизельного двигателя

Содержание

Классификация камер сгорания дизельного двигателя

Камера сгорания двигателя  — это замкнутое пространство, полость для сжигания газообразного, или жидкого топлива в двигателях внутреннего сгорания. В камере сгорания происходит приготовление и сжигание топливовоздушной смеси.

Наряду с обеспечением оптимального смесеобразования ⭐ камеры сгорания должны способствовать получению высоких экономических показателей и хороших пусковых качеств двигателей. В зависимости от конструкции и используемого способа смесеобразования камеры сгорания дизелей делятся на две группы:

  • неразделенные
  • разделенные

Неразделенные камеры сгорания

Неразделенные камеры сгорания представляют собой единый объем и имеют обычно простую форму, которая, как правило, согласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры компактны, имеют относительно малую поверхность охлаждения, благодаря чему снижаются потери теплоты. Двигатели с такими камерами сгорания имеют приличные экономические показатели и хорошие пусковые качества.

Неразделенные камеры сгорания отличаются большим разнообразием форм. Чаще всего они выполняются в днище поршней, иногда частично в днище поршня и частично в головке блока цилиндров, реже — в головке.

На рисунке показаны некоторые конструкции камер сгорания неразделенного типа.

Камеры сгорания дизелей неразделенного типа

Рис. Камеры сгорания дизелей неразделенного типа: а — тороидальная в поршне; б — полусферическая в поршне и головке цилиндра; в — полусферическая в поршне; г — цилиндрическая в поршне; д — цилиндрическая в поршне с боковым размещением; е — овальная в поршне: ж — шаровая в поршне; з — тороидальная в поршне с горловиной; и — цилиндрическая, образованная днищами поршней и стенками цилиндра; к — вихревая в поршне; л — трапецеидальная в поршне; м — цилиндрическая в головке под выпускным клапаном

В камерах сгорания, приведенных на рисунке, а—д качество смесеобразования достигается исключительно путем распыления топлива и согласования формы камер с формой факелов впрыска топлива. В этих камерах чаше всего применяются форсунки с многодырчатыми распылителями и используются высокие давления впрыска. Такие камеры имеют минимальные поверхности охлаждения. Для них характерна низкая степень сжатия.

Камеры сгорания, показанные на рис. е—з, имеют более развитую теплопередаюшую поверхность, что несколько ухудшает пусковые свойства двигателя. Однако путем вытеснения воздуха из надпоршневого пространства в объем камеры в процессе сжатия удается создать интенсивные вихревые потоки заряда, которые способствуют хорошему перемешиванию топлива с воздухом. При этом обеспечивается высокое качество смесеобразования.

Камеры сгорания, показанные на рисунке, к—м, находят применение в многотопливных двигателях. Для них характерно наличие строго направленных потоков заряда, обеспечивающих испарение топлива и его введение в зону сгорания в определенной последовательности. Для улучшения рабочего процесса в цилиндрической камере сгорания в головке под выпускным клапаном (рис. м) используется высокая температура выпускного клапана, который является одной из стенок камеры.

Разделенные камеры сгорания

Разделенные камеры сгорания состоят из двух отдельных объемов, соединяющихся между собой одним или несколькими каналами. Поверхность охлаждения таких камер значительно больше, чем у камер неразделенного типа. Поэтому в связи с большими тепловыми потерями двигатели с разделенными камерами сгорания имеют обычно худшие экономические и пусковые качества и, как правило, более высокие степени сжатия.

Однако при разделенных камерах сгорания за счет использования кинетической энергии газов, перетекающих из одной полости в другую, удается обеспечить качественное приготовление топливно-воздушной смеси, благодаря чему достигается достаточно полное сгорание топлива и устраняется дымление на выпуске.

Камеры сгорания дизелей разделенного типа

Рис. Камеры сгорания дизелей разделенного типа: а — предкамера; б — вихревая камера в головке; в — вихревая камера в блоке

Кроме того, дросселирующее действие соединительных каналов разделенных камер позволяет значительно уменьшить «жесткость» работы двигателя и снизить максимальные нагрузки на детали кривошипно-шатунного механизма. Некоторое снижение «жесткости» работы двигателей с разделенными камерами сгорания может также обеспечиваться путем повышения температуры отдельных частей камер сгорания.

Дизельные двигатели. Теория | Vincast.ru

Главное достоинство дизельных двигателей — это низкие затраты на топливо, поскольку моторы этого типа имеют малые удельные расходы топлива на основных эксплуатационных режимах, да и само горючее во многих странах заметно дешевле бензина.


К числу недостатков дизеля

по сравнению с бензиновыми

двигателя

ми относятся: сравнительно низкие мощностные показатели, более дорогая в изготовлении и обслуживании топливная аппаратура, худшие пусковые качества, повышенный выброс некоторых токсичных компонентов с отработавшими газами, повышенный уровень шума.

Экономические и экологические показатели автомобильного

дизельного двигателя

в первую очередь зависят от особенностей рабочего процесса и, в частности, от типа камеры сгорания, системы впрыскивания топлива. Камеры сгорания дизельного двигателя делятся на

разделенные

(вихрекамерные и форкамерные),

полуразделенные

и

неразделенные

.


Разделенная вихрекамерная камера сгорания


Разделенная форкамерная камера сгорания


Полуразделенная камера сгорания


Неразделенная камера сгорания

Дизельные

двигатели

с неразделенной камерой иногда называют

двигателям

и с непосредственным впрыском.


Дизельные двигатели с разделенной камерой сгорания

обычно устанавливаются на грузовики малой грузоподъемности и легковые автомобили. Это определяется необходимостью снижения уровня шума и меньшей жесткостью работы. При подходе поршня к ВМТ воздух из основного объема камеры сгорания вытесняется в дополнительный, создавая в нем интенсивную турбулизацию заряда, что способствует лучшему перемешиванию капель топлива с воздухом. Недостатком дизельных двигателей с разделенной камерой сгорания являются: некоторое увеличение расхода топлива вследствие повышения потерь в охлаждающую среду из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.


Дизельные двигатели с неразделенной камерой сгорания

имеют низкие расходы топлива и легче запускаются. Недостатком их является повышенная жесткость работы и соответственно — высокий уровень шума.

Для полного сгорания топлива изготовитель выбирает оптимальное соотношение между количеством сопловых отверстий у

форсунки

и интенсивностью вихревого движения заряда в цилиндре — так, чтобы струи топлива полностью охватили весь воздушный заряд. Чем меньше сопловых отверстий, тем более интенсивным должно быть вращательное движение заряда. У четырехтактных дизельных двигателей вращательное движение воздуха во время хода впуска обеспечивается тангенциальным расположением впускного канала, наличием ширмы у клапана, винтовым (улиткообразным) каналом перед впускным клапаном. В процессе сжатия при подходе поршня к ВМТ воздух перетекает из надпоршневого пространства в камеру сгорания в поршне, увеличивая интенсивность вращательного движения свежего заряда. Поэтому при ремонте дизельных двигателей необходимо следить, чтобы зазор между днищем поршня и головкой цилиндров соответствовал заданной инструкцией величине. При большем зазоре интенсивность турбулизации заряда будет недостаточна, при меньшем на больших нагрузках может появиться стук поршня от его ударов по головке. Во время сборки дизельного двигателя этот зазор проверяется установкой свинцовых пластинок на днище поршня и прокруткой

коленчатого вала

после затяжки болтов крепления головки.


Способы создания вихревого движения заряда во время впуска:


Тангенциальное расположение канала


Установка на клапане ширмы


Винтовой канал


Пуск дизельного двигателя:

У дизельных двигателей с разделенной камерой сгорания (вихрекамерные или форкамерные) пусковые качества значительно хуже, чем у дизельных двигателей с неразделенной камерой.

Для облегчения пуска дизельные двигатели с разделенной камерой оснащаются электрическими свечами накаливания, устанавливаемыми в форкамеру или вихревую камеру. Реже свечи устанавливаются в дизельных двигателей с непосредственным впрыском.

Свечи бывают открытого и закрытого типа со спиралью накаливания или нагревательным элементом. Они выпускаются теми же фирмами, что и свечи зажигания. Кожух свечи располагается в камере сгорания дизельного двигателя так, чтобы конус распыленного топлива попадал только на его раскаленный наконечник.

В период, когда токсичность отработавших газов оценивалась по выбросу СО и СН (углеводородов), в широкой прессе отмечалось, что дизели имеют из всех

ДВС

наиболее низкую токсичность. Однако в дальнейшем, когда товарные бензины стали выпускаться без этиловой жидкости, а бензиновые двигатели начали оснащаться трехкомпонентными каталитическими

нейтрализатор

ами, снижающими содержание СО, СН, NОх на 90-95%, о низкой токсичности дизельных двигателей по сравнению с бензиновыми двигателями стали скромно умалчивать.


Повышенная токсичность дизелей определяется следующими факторами:

Первый из них —

низкая эффективность каталитических нейтрализаторов

. Это связано с тем, что степень сжатия, а следовательно, и степень расширения дизелей значительно выше, чем у бензиновых двигателей. Поэтому температура отработавших газов недостаточна для эффективной работы нейтрализаторов. В связи с этим не удается добиться снижения выброса оксидов азота, которые в несколько десятков раз более токсичны, чем СО.

Второй фактор —

повышенный выброс на некоторых режимах

, особенно во время прогрева, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых являются канцерогенами. Третий — частицы сажи являются носителями канцерогенов. Попадая в дыхательные пути, они вызывают раковые опухоли. Из-за того, что ни в одной из стран до сих пор нет быстродействующих газоанализаторов, нет и возможности нормировать их выброс. Поэтому законодатели используют косвенные показатели — ограничение выброса углеводородов и твердых частиц.


Основные причины повышенной токсичности и повышенного расхода топлива дизельных двигателей следующие:

— низкое качество топлива,

— нарушение работы системы топливоподачи (слишком низкий коэффициент избытка воздуха, неравномерная подача топлива по цилиндрам, смещение фаз впрыска, межцикловая неравномерность подачи топлива),

— повышенный расход масла на угар из-за износа деталей цилиндропоршневой группы,

— в двигателях с турбонаддувом — слишком низкое давление наддува.


Одна из главных характеристик дизельного топлива — это его цетановое число, показывающее способность к самовоспламенению.

Оно определяется на одноцилиндровой установке сравнением со смесью эталонного топлива, подбираемого так, чтобы период задержки воспламенения был таким же, как и у испытуемого горючего. Величина цетанового числа должна быть не менее 45. Она зависит от химического состава топлива и наличия в нем специальных присадок. Увеличение цетанового числа достигается повышением содержания в топливе парафиновых углеводородов. При этом улучшаются пусковые качества, однако при цетановом числе 50…55 ухудшается полнота сгорания.


Источник:

amastercar.ru

Неразделенные и разделенные — Студопедия

Лекция 9

СМЕСЕОБРАЗОВАНИЕ В ДИЗЕЛЕ

1. Классификация камер сгорания

2. Способы смесеобразования

2.1. Объемный способ смесеобразования

2.2. Пленочный и объемно-пленочный способы смесеобразования

2.3. Сравнительная оценка различных способов смесеобразования

3. Распыление топлива

4. Образование горючей смеси и воспламенение топлива

В дизелях смесеобразование происходит внутри цилиндров. Система смесеобразования обеспечивает:

• распыливание топлива;

• развитие топливного факела;

• прогрев, испарение и перегрев топливных паров;

• смешивание паров с воздухом.

Смесеобразование начинается в момент начала впрыска топлива и заканчивается одновременно с окончанием сгорания. В этом слу­чае время на смесеобразование отводится в 5—10 раз меньше, чем в карбюраторном двигателе. И по всему объему образуется неодно­родная смесь (есть участки очень обедненного состава, а есть участ­ки сильно обогащенного состава). Поэтому горение протекает при больших суммарных значениях коэффициента избытка воздуха (1,4-2,2).

Развитие смесеобразования и получение оптимальных результатов в дизеле зависит от следующих факторов:

• способа смесеобразования;

• формы камеры сгорания;

• размеров камеры сгорания;

• температуры поверхностей камеры сгорания;

• взаимных направлений движения топливных струй и воздуш­ного заряда.

При этом степень их влияния зависит от типа камеры сгорания.

Классификация камер сгорания



Наряду с обеспечением оптимального смесеобразования камеры сгорания должны способствовать получению высоких экономических показателей и хороших пусковых качеств двигателей.

В зависимости от конструкции и используемого способа смесеобразования камеры сгорания дизелей делятся на две группы:

неразделенные и разделенные.

Неразделенные камеры сгорания представляют собой единый объем и имеют обычно простую форму, которая, как правило, со­гласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры компактны, имеют относительно малую поверхность охлаждения, благодаря чему снижаются потери тепло­ты. Двигатели с такими камерами сгорания имеют приличные эко­номические показатели и хорошие пусковые качества.

Неразделенные камеры сгорания отличаются большим разнооб­разием форм. Чаще всего они выполняются в днище поршней, ино­гда частично в днище поршня и частично в головке блока цилинд­ров, реже — в головке.


На рис. 1 показаны некоторые конструкции камер сгорания неразделенного типа.

В камерах сгорания, приведенных на рис. 1, а—д качество смесеобразования достигается исключительно путем распыления топлива и согласования формы камер с формой факелов впрыска топлива. В этих камерах чаще всего применяются форсунки с мно­годырчатыми распылителями и используются высокие давления впрыска. Такие камеры имеют минимальные поверхности охлажде­ния. Для них характерна низкая степень сжатия.

Рис. 1. Камеры сгорания дизелей неразделенного типа:
а — тороидальная в по­ршне; б — полусферическая в поршне и головке цилиндра; в — полусферическая в поршне; г — цилиндрическая в поршне;
д — цилиндрическая в поршне с боко­вым размещением;
е — овальная в поршне; ж — шаровая в поршне;
з — торои­дальная в поршне с горловиной;
и — цилиндрическая, образованная днищами поршней и стенками цилиндра;
к — вихревая в поршне; л — трапецеидальная в поршне;
м — цилиндрическая в головке под выпускным клапаном

Камеры сгорания, показанные на рис. 1, е—з, имеют более развитую теплопередающую поверхность, что несколько ухудшает пусковые свойства двигателя. Однако путем вытеснения воздуха из надпоршневого пространства в объем камеры в процессе сжатия удается создать интенсивные вихревые потоки заряда, которые спо­собствуют хорошему перемешиванию топлива с воздухом. При этом обеспечивается высокое качество смесеобразования.

Камеры сгорания, показанные на рис. 1, к—м, находят приме­нение в многотопливных двигателях. Для них характерно наличие строго направленных потоков заряда, обеспечивающих испарение топлива и его введение в зону сгорания в определенной последова­тельности. Для улучшения рабочего процесса в цилиндрической ка­мере сгорания в головке под выпускным клапаном (рис. 1, м) ис­пользуется высокая температура выпускного клапана, который яв­ляется одной из стенок камеры.

Разделенные камеры сгорания (рис. 2) состоят из двух отдель­ных объемов, соединяющихся между собой одним или несколькими каналами. Поверхность охлаждения таких камер значительно боль­ше, чем у камер неразделенного типа. Поэтому в связи с большими тепловыми потерями двигатели с разделенными камерами сгорания имеют обычно худшие экономические и пусковые качества и, как правило, более высокие степени сжатия.

Рис. 2. Камеры сгорания дизелей разделенного типа:
а — предкамера; б — вих­ревая камера в головке; в — вихревая камера в блоке

Однако при разделенных камерах сгорания за счет использова­ния кинетической энергии газов, перетекающих из одной полости в другую, удается обеспечить качественное приготовление топливно-воздушной смеси, благодаря чему достигается достаточно полное сгорание топлива и устраняется дымление на выпуске.

Кроме того, дросселирующее действие соединительных каналов разделенных камер позволяет значительно уменьшить «жесткость» работы двигателя и снизить максимальные нагрузки на детали кривошипно-шатунного механизма. Некоторое снижение «жесткости» работы двигателей с разделенными камерами сгорания может также обеспечиваться путем повышения температуры отдельных частей камер сгорания.

Камеры сгорания дизельных двигателей — Студопедия

Для хорошего смесеобразования одновременно необходимо правильно сочетать распыливание топлива и движение воздуха в камере сгорания. Это позволит улучшить распределение топлива в камере и осуществить процесс сгорания при наименьшем количестве воздуха.

Форма камеры сгорания должна:

  • соответствовать направлению и дальнобойности струи впрыскиваемого топлива;
  • обеспечивать организованное движение потока воздуха, интенсивное перемешивание топлива и воздуха, полное сгорание топлива в короткий период при наименьшем количестве воздуха;
  • плавное нарастание давления в цилиндре, умеренное максимальное давление при сгорании и минимальные тепловые потери;
  • создавать условия для облегченного запуска двигателя.

По конструкции дизельные двигатели разделяются на две основные категории: с неразделенными и разделенными камерами сгорания. Неразделенные камеры имеют только одно отделение, в котором происходит и смесеобразование, и сгорание топлива. Разделенные камеры разделены на две части: основную и дополнительную, соединены между собой горловиной. При этом топливо впрыскивается в дополнительную камеру.

По способу различают объемное, пленочное и комбинированное смесеобразование.

При объемном смесеобразовании топливо распыливается в объеме камеры сгорания и лишь небольшая часть его попадает в пристеночный слой. Объемное смесеобразование осуществляется в неразделенных камерах сгорания.

Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти все топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа. Пленочное смесеобразование по сравнению с объемным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры. Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счет увеличения количества топлива, участвующего в образовании начального очага сгорания.





Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объеме заряда. На поверхности камеры оседает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с. Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме камеры сгорания, и сближает процесс с объемным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий.

Камеры сгорания с непосредственным впрыском. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счет кинетической энергии, сообщаемой топливу при впрыске. Для равномерного распределения топлива в камере форсунки таких двигателей часто выполняют с несколькими отверстиями.

На рис. 6.4 показаны камеры сгорания двигателей с непосредственным впрыском, обеспечивающие объемное смесеобразование.

а б

Рис. 6.4. Неразделенные камеры сгорания для объемного смесеобразования:

а – полусферическая, б – тороидальная


Рис. 6.5. Использование завихрителей
Для улучшения смесеобразования здесь предусмотрено вихревое движение воздуха вокруг оси цилиндра за счет завихрителей, установленных во впускном коллекторе (рис. 6.5).
Камера сгорания с непосредственным впрыском при пленочном смесеобразовании располагается соосно с цилиндром. Смещенная форсунка направляет струю топлива под острым углом на стенку камеры сгорания, имеющей сферическую форму (рис. 6.6а). Заряд приводится в интенсивное вращательное движение (тангенциальная скорость движения заряда достигает 50–60 м/с), и топливные капли распространяются на стенке камеры сгорания.

а б

Рис. 6.6. Неразделенные камеры сгорания для пленочного смесеобразования:

а – типа дизелей МАН, б – типа “Гессельман”

Кроме указанной выше, при пленочном смесеобразовании камеру сгорания выполняют тарелкообразной (рис. 6.6б). Струя топлива из форсунки, ввиду малого расстояния, достигает дна камеры и оседает в виде пленки.


Рис. 6.7. Неразделенные камеры сгорания для комбинированного смесеобразования
Камеры сгорания ЦНИДИ (Центральный научно-исследовательский дизельный институт) относят к комбинированным камерам с объемно-пленочным смесеобразованием. Камера сгорания выполняется в поршне, имеет форму усеченного конуса с основанием меньшего диаметра у входной горловины, диаметр которой составляет 0.35–0.37 диаметра цилиндра, и со скругленными стенками у нижнего основания (рис. 6.7).

Струи топлива попадают на стенку под острым углом и совершают сравнительно малый путь. На конической поверхности камеры оседает примерно 50% топлива.

Основное достоинство камер сгорания с непосредственным впрыском по сравнению с камерами других разновидностей заключается в следующем.

1. Простая и компактная форма камеры сгорания обеспечивает меньшие тепловые потери в процессе сгорания и более высокий эффективный КПД.

2. Менее интенсивное охлаждение воздуха в период сжатия (компактность камеры и сравнительно небольшое вихревое движение воздуха) создает условия для облегчения пуска. Время для пуска двигателя с непосредственным впрыском в 1.8–3.6 раза меньше, чем для пуска двигателей с другими камерами сгорания.

3. Конструкция головки цилиндра упрощается.

Недостатки камер сгорания с непосредственным впрыском состоят в следующем.

1. Смесеобразование происходит при больших давлениях впрыска (до 30 МПа). Это повышает требования к топливоподающей аппаратуре.

2. Процесс сгорания характеризуется значительными давлениями. Скорость нарастания давления при этом высокая. В связи с увеличением нагрузки на кривошипно-шатунный механизм приходится увеличивать запас прочности узлов двигателя.

3. Малые сопловые отверстия распылителя форсунки (0.1–0.25 мм) требуют точного исполнения и при недостаточно очищенном топливе могут засоряться. Поэтому топливо должно очищаться с большой тщательностью. Незначительные отклонения в качестве топлива от нормы ухудшают работу двигателя.

Предкамеры. Предкамерные дизельные двигатели имеют камеру сгорания, разделенную на две части (рис. 6.8). Основная камера размещается непосредственно над поршнем. Ее объем составляет 0.75–0.60отвсего объема камеры сгорания. Предкамера выполняется в головке цилиндра. Она занимает по объему 0.25–0.40 всего объема камеры. Предкамера соединяется с основной камерой одним или несколькими каналами.


Рис. 6.8. Предкамера
Смесеобразование у предкамерного двигателя протекает в такой последовательности. При сжатии часть сжатого воздуха поступает из цилиндра в предкамеру. В конце такта сжатия в предкамеру через форсунку впрыскивается топливо под давлением 8–12.5 МПа. Распыленное топливо, попадая в среду сжатого воздуха предкамеры, самовоспламеняется.

При этом сгорает от 20 до 30% впрыскиваемого топлива, что соответствует количеству кислорода воздуха, содержащегося в предкамере.

При сгорании части топлива температура и давление в предкамере повышаются. Горящие газы и несгоревшее топливо устремляются из предкамеры в основную камеру. Здесь сгорание топлива продолжается и заканчивается в процессе расширения.

В предкамерных двигателях интенсивное смесеобразование достигается главным образом за счет энергии топлива, частично сгоревшего в предкамере. Эта энергия вызывает перепад давления между предкамерой и основной камерой (обычно 1.5 МПа), что создает условия для интенсивного смесеобразования и более тонкого распыления топлива, предварительно распыленного в предкамере.

Смесеобразованию способствует образование вихревых движений воздуха при перемещении его в процессе сжатия из основной камеры в предкамеру. Форсунка таких двигателей обычно выполняется с одним отверстием.

Вихревые камеры. Двигатели с вихревыми камерами, как и предкамерные двигатели, имеют камеру, разделенную на две части (рис. 6.9). Основная камера расположена непосредственно над поршнем и имеет сравнительно небольшой объем. Вихревая камера выполнена в головке цилиндра, имеет обтекаемую форму (шара или сплющенного шара) и охлаждается водой. Ее объем составляет от 50 до 75% всего объема камеры сгорания. Такой объем позволяет вовлечь в вихревое движение большое количество воздуха. Вихревая камера сообщается с основной посредством горловины.


Рис. 6.9. Вихревая камера
В период сжатия воздух вытесняется из основной камеры в вихревую. Взаиморасположение камер способствует смесеобразованию. Топливо впрыскивается форсункой в вихревую камеру. Здесь струя топлива увлекается воздушным потоком, интенсивно перемешивается с ним, самовоспламеняется и частично сгорает.

В период сгорания в вихревой камере резко повышается давление. При этом продукты сгорания и несгоревшая часть топлива устремляются в основную камеру. Здесь процесс сгорания продолжается, заканчиваясь при расширении.

В двигателях с вихревыми камерами для смесеобразования используются главным образом вихревые потоки воздуха, создаваемые в процессе сжатия в вихревой камере. Перепад давлений между камерами сравнительно небольшой (обычно 0.6 МПа). Форсунки у таких двигателей применяются обычно с одним отверстием. Давление начала подачи составляет 8–10 МПа.

В дизельных двигателях с разделенными камерами сгорания достигается бездымная работа при малых значениях коэффициента избытка воздуха. Значительно снижаются требования к качеству распыливания топлива, и применяются форсунки закрытого типа с одним сопловым отверстием большого диаметра (1–2 мм). Давление впрыска топлива составляет 12–15 МПа, и обеспечивается мягкая работа двигателя. Эти дизельные двигатели являются наиболее быстроходными из всех дизелей.

Основные недостатки раздельных камер сгорания:

  • низкие пусковые свойства в связи с интенсивным отводом тепла;
  • высокий удельный расход топлива, большие потери тепла и значительные затраты энергии на перетекание газов из одной полости камеры сгорания в другую;
  • сложная конструкция камеры сгорания и повышенные тепловые напряжения отдельных деталей.

Неразделенные и разделенные камеры сгорания

Несмотря на то, что головки с неразделенными камерами сгорания являются желательными для форсированных двигателей, головки с разделенными камерами часто являются вполне адекватным выбором вместе с распределительным валом особого профиля, пока не возникает избыточное выступание клапанов. Хотя многие головки с разделенными камерами «страдают» от увеличенного выступания клапанов, осторожная корректировка формы (и иногда это не требует сильной обработки) может уменьшить сильное выступание. Почему? Потому что слегка модифицированные головки блока могут часто обеспечить поток, сравнимый с головками с неразделенными камерами сгорания при подъеме клапанов величиной до 14,0 мм. Головки с неразделенными камерами сгорания, однако, имеют отдельные преимущества при сравнении, т. к. они стремятся уменьшить выступание клапанов при высоких значениях подъема клапанов, часто составляющего 17,8 мм. Однако для повседневного использования в головках с неразделенным и камерами сгорания редко имеется какое-либо увеличение потока (и мощности) Фактически, головки с неразделенными камерами могут в чем-то уменьшить потенциал мощности, т. к. камера большего размера меньше сопротивляется детонации.

Головка с разделенными камерами сгорания имеет дополнительные преимущества. Компактная разделенная камера сгорания допускает использование относительно высокой степени сжатия (9:1 или более) без использования куполообразных поршней. Купол поршня уменьшает мощность, ограничивая распространение переднего фронта пламени в объеме камеры сгорания. Вы можете спросить: почему поршни с высокими куполами обычно используются в гоночных двигателях? Потери в эффективности сгорания из-за купола поршня компенсируются увеличением мощности, получаемой из-за очень высокой степени сжатия, часто составляющей 12,5:1 или даже больше. Это тот случай, когда «может это и неэлегантно, зато это работает».

 

Двигатель автомобиля СORVETЕ ZR-1. Поршни с выемками и компактные камеры сгорания для уменьшения движения фронта пламени и детонации при оптимизации мощности.

 

Степень сжатия

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, па дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно: при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

 

1 — препятствия в системе впуска приводят к низкой динамической степени сжатия;

Похожие статьи:

Какие бывают камеры сгорания дизельных двигателей?

Главная » Блог » Какие бывают камеры сгорания дизельных двигателей?


Какие бывают камеры сгорания дизельных двигателей?

На качество смесеобразования, как правило, влияют 3 основных фактора – метод впрыска, степень сжатия топливной смеси и геометрическая форма камеры сгорания. А от равномерности распределения смеси внутри камеры зависит мощность «дизеля» и то, как громко он работает. Дизельные двигатели бывают с разделенной и неразделенной камерой сгорания.

На легковом транспорте, как правило, применяются моторы небольших объемов и, соответственно, с разделенной камерой. В таком виде камер сгорания топливо впрыскивается в дополнительную полость в головке блока цилиндров. В таком случае смесеобразование может осуществляться 2-мя способами – вихрекамерным и форкамерным (предкамерным).

Во время этих двух процессов сгорания, ДТ подается в предварительную камеру, после чего смешивается с кислородом и воспламеняется. Когда камера имеет сферическую форму, воздух там закручивается подобно вихрю, из чего и пошло название. Форкамерная же конструкция предполагает наличие специальных каналов, по которым проходит смесь. Это придает ее составу большей однородности.

В обоих типах разделенных камер сгорание топлива происходит «в 2 шага», что значительно снижает нагрузку на поршня. Но ввиду дополнительных расходов на перекачивание топливной смеси по камерам снижаются пусковые качества, и увеличивается потребление двигателем дизтоплива.

Какие бывают камеры сгорания дизельных двигателей?

Различия этих двух методов заключаются в том, что в предкамерном процессе смесь приобретает однородность при перекачивании, а значит уже после воспламенения, а в вихрекамерном – смесь перемешивается до однородного состава за счет вихря до воспламенения.

Дизельные двигатели с камерой сгорания неразделенной имеют непосредственную систему впрыска, что, естественно, делает их наиболее экономичными по сравнению с другими конструкциями движков. Но для таких моторов характерна повышенная вибрация и чрезмерная шумность, особенно при разгоне. А все это из-за того, что частота вращения коленвала довольно большая, а система впрыска – прямая.

Добавить комментарий

Виды камер сгорания

Камеры сгорания
В современных бензиновых двигателях с верхним расположением клапанов преимущественно используются
камеры сгорания следующих типов: полусферические,
полисферические, клиновые, плоскоовальные, грушевид-
ные, цилиндрические. Существуют смешанные варианты
камер сгорания. Форма камеры сгорания определяется
расположением клапанов, формой днища поршня, расположением свечи, а иногда и двух свечей зажигания, наличием вытеснителей. При проектировании двигателя с
учетом применяемого топлива и заданной степени сжатия к камерам сгорания предъявляются следующие требования:
обеспечение высоких скоростей сгорания, снижения требований к октановому числу топлива, минимальных потерь с охлаждающей жидкостью, низкой
токсичности, технологичности производства. Это определяется
следующими условиями:

—компактностью камеры сгорания;
—эффективной турбулизацией смеси во время сгорания;
—минимальным отношением площади поверхности

камеры сгорания к рабочему объему цилиндров.
Как уже отмечалось, одним из способов повышения
эффективного КПД двигателя является увеличение степени сжатия. Основной причиной ограничения степени сжатия является опасность появления аномальных
процессов сгорания (детонации, калильного зажигания, грохота и др.). У современных серийных двигателей, имеющих достаточно высокие степени сжатия,
дальнейшее их увеличение даст сравнительно небольшой эффект и связано с необходимостью решения ряда
проблем. Прежде всего — это возникновение детонации. Именно она определяет требования к величине
степени сжатия и форме камеры сгорания. После воспламенения рабочей смеси от искры фронт пламени
распространяется по камере сгорания, давление и температура в этой части заряда растут до 50…70 бар и
2000…2500 С, в наиболее удаленной от свечи части рабочей смеси происходят предпламенные химические
реакции. При невысокой частоте вращения коленчатого вала, особенно в двигателях с большим диаметром
цилиндров, время на эти реакции иногда оказывается
достаточным, чтобы остаточная часть заряда сгорала с
высокими скоростями (до 2000 м/с).

Детонационное
сгорание вызывает появление ударных волн, распространяющихся по камере сгорания с высокой скоростью,
вызывая металлические стуки, иногда неправильно называемых стуком пальцев. Ударная волна, разрушая
пристеночный слой газов с пониженной температурой,
способствует повышению теплоотдачи в стенки цилиндра, камеры сгорания, тарелки клапанов, днище поршня, вызывая их перегрев и увеличивая тепловые потери в двигателе. Работа с сильной детонацией
приводит к общему перегреву двигателя, ухудшению
мощностных и экономических показателей. При длительной езде с интенсивной детонацией начинается
эрозия стенок камеры сгорания, оплавление и задиры
поршня, повышенный износ верхней части цилиндра
из-за срыва масляной пленки, поломка перемычек между канавками поршневых колец и задиры зеркала цилиндра, прогар прокладки головки цилиндров.
К числу факторов, влияющих на требования к октановому числу топлива, относится компактность камеры сгорания, характеризуемая степенью нарастания объема сгоревшей
части смеси (в % к полному объему камеры сгорания)
по мере удаления условного фронта пламени от свечи. Наиболее компактными являются полусферические, шатровые камеры сгорания, имеющие пониженные требования к
октановому числу. Однако для повышения степени сжатия до 9,5… 10,5 в полусферических
или полисферических камерах иногда приходится днище
поршня делать выпуклым, что существенно ухудшает степень компактности и соответственно повышает требования к октановому числу, которые возрастают на 3…5
единиц. В современных двигателях с 4 клапанами в одном цилиндре свеча располагается в центре камеры сгорания. Это обеспечивает максимальную степень нарастания объема.

Другим параметром, характеризующим антидетонационные качества, является степень турбулизации смеси в
процессе сгорания. Интенсивность турбулизации зависит
от скорости и направления потока смеси на входе в камеру сгорания. Одним из способов создания интенсивной
турбулизации является увеличение площади вытеснителя
(объема расположенного между днищем поршня и плоскостью головки цилиндров) с целью турбулизации заряда
для увеличения скорости сгорания. Вытеснители имеют
клиновые, овальные, грушевидные камеры сгорания. При
замене плоскоовальной камеры сгорания на грушевидную, увеличении за счет этого площади вытеснителя при
одновременном уменьшении его высоты на двигателях
автомобилей УАЗ удалось без изменения требований к ОЧ
топлива поднять степень сжатия на 0,5, за счет чего расход топлива уменьшился на 5…7%, а мощность увеличилась на 4… 5%. У двигателей УЗАМ 331 и у некоторых
двигателей грузовых автомобилей (ЗИЛ-508.10) для создания
вихревого движения заряда перед впускным клапаном канал выполнялся улиткообразным. Однако при высоких
скоростях смеси это приводило к увеличению сопротивления и соответственно снижению мощностных показателей. Поэтому последние модели двигателей
УЗАМ выпускаются с обычным впускным каналом.
Полусферические, полисферических цилиндрические камеры сгорания практически не имеют вытеснителя, поэтому их антидетонационные качества (по индексу детонации)
уступают камерам с вытеснителями. При
массовом производстве двигателей за счет отклонения
размеров деталей кривошипно-шатунного механизма и
объема камеры сгорания фактическая степень сжатия
двигателя одной модели может отличаться на значительную величину (в пределах одной единицы). Поэтому
для автомобиля одной и той же модели часто требуются
бензины с разным октановым числом. Фактическую степень сжатия приблизительно можно определить при помощи компрессометра.

а — полусферическая; б — полусферическая с вытеснителем; в — сферическая; г — шатровая; д — плоскоовальная; е -клиновая;
з — цилиндрическая камера сгорания в поршне;
ж — полуклиновая с частью камеры в поршне;

Общие знания о двигателях внутреннего сгорания

Улучшение технических характеристик двигателя

Тюнинг автомобилей

  на главную        0-100 км/ч    0-100
 

Процесс сгорания в двигателе с искровым зажиганием с системой двойного впрыска

1. Введение

В настоящее время впрыск является основным решением подачи топлива в двигатели с искровым зажиганием (SI). Системы впрыска топлива отличались разным местом подачи топлива в двигатель. Независимо от сложности системы управления, можно выделить следующие типы систем впрыска топлива:

  • впрыск перед дроссельной заслонкой, общий для всех цилиндров — называется впрыск дроссельной заслонки — TBI или одноточечный впрыск — SPI (Рисунок 1 a),

  • впрыск в отдельные впускные каналы каждого цилиндра — называется Впрыск топлива в порт — PFI или Многоточечный впрыск — MPI (Рисунок 1 b),

  • впрыск непосредственно в каждый цилиндр, с прямым впрыском, — DI (рисунок 1 c).

Рисунок 1.

Системы впрыска топлива [1]: а) одноточечный впрыск, б) многоточечный впрыск, в) прямой впрыск; 1 — Подача топлива, 2 — Воздухозаборник, 3 — Дроссель, 4 — Впускной коллектор, 5 — Топливная форсунка (или форсунки), 6 — Двигатель

1.1. Историческая справка о применении систем впрыска топлива в двигателях SI

История применения впрыска топлива в двигателях с искровым зажиганием в качестве альтернативы ненадежным карбюраторам восходит к рубежу 19 и 20 веков.Первая попытка применения системы впрыска топлива для двигателя с искровым зажиганием была предпринята в 1898 году, когда компания Deutz использовала топливный насос ползункового типа в своем стационарном двигателе, работающем на керосине. Также систему подачи топлива первого самолета братьев Райт с 1903 года можно узнать как простую, гравитационную, систему впрыска бензина [2]. Внедрение сопла Вентури в карбюратор в последующие годы и различные технологические и материальные проблемы привели к тому, что разработка систем впрыска топлива в двигателях с искровым зажиганием снизилась на два следующих десятилетия.Желание получить лучшее соотношение мощности и рабочего объема, чем значение, полученное с карбюратором, привело к возврату к концепции впрыска топлива. Это привело к тому, что первые двигатели с впрыском бензина использовались в качестве движущей силы транспортных средств перед Второй мировой войной и . В авиационной промышленности разработка систем непосредственного впрыска топлива происходила незадолго до и во время Второй мировой войны и , в основном благодаря компании Bosch, которая с 1912 года проводила исследования в области топливного насоса.Первым в мире SI-двигателем с непосредственным впрыском считается силовой агрегат Junkers Jumo 210G, разработанный в середине 30-х годов прошлого века и использованный в 1937 году в одной из модификаций истребителя Messerschmitt Bf-109 [3].

После Второй мировой войны были предприняты попытки использовать впрыск топлива в двухтактные двигатели для уменьшения потерь топлива в процессе продувки цилиндров. Двухтактные двигатели с искровым зажиганием с механическим впрыском топлива в цилиндр применялись в немецких малолитражках Borgward Goliath GP700 и Gutbrod Superior 600, выпускавшихся в 50-х годах 20 века, но без особого успеха.Четырехтактный двигатель с непосредственным впрыском бензина был впервые применен в стандартной комплектации в спортивном автомобиле Mercedes-Benz 300 SL в 1955 году [4]. Динамичное развитие автомобильной промышленности в последующие годы привело к тому, что проблема загрязнения окружающей среды автотранспортными средствами стала приоритетной. В сочетании с развитием электронных систем и снижением цен на них это привело к отказу от карбюратора как основного устройства в системе подачи топлива двигателя SI в пользу систем впрыска.Первоначально системы впрыска представляли собой упрощенные устройства на базе аналоговой электроники либо с механическим или механико-гидравлическим управлением. В последующие годы вошли в употребление более совершенные цифровые системы впрыска. В настоящее время система впрыска объединена с системой зажигания в одном устройстве, а также управляет вспомогательными системами, такими как изменение фаз газораспределения и рециркуляция выхлопных газов. Электронный блок управления двигателем объединен в сеть с другими модулями управления, такими как ABS, антипробуксовочная система и электронная программа стабилизации.Это необходимо для согласования работы вышеуказанных систем.

Последнее десятилетие 20-го века можно считать окончательным закатом карбюратора, устройства, которое около 100 лет доминировало в топливных системах для двигателей с искровым зажиганием. Также было прекращено производство топливных систем с непрерывным впрыском. Из-за последовательного введения все более строгих стандартов на выбросы выхлопных газов центральные системы впрыска должны были уступить место системам многоточечного впрыска даже в самых маленьких двигателях транспортных средств.В конце 90-х на рынке снова появились автомобили с искровым зажиганием и непосредственным впрыском топлива. Это наиболее точный способ подачи топлива. Важное преимущество прямого впрыска состоит в том, что испарение топлива происходит только в объеме цилиндра, что приводит к охлаждению заряда и, как следствие, увеличению объемного КПД цилиндра [5]. В 1996 году японская компания Mitsubishi начала производство двигателя 4G93 GDI объемом 1,8 л для модели Carisma.Новый двигатель имел на 10% больше мощности и крутящего момента и на 20% меньше расхода топлива по сравнению с ранее использовавшимся двигателем с многоточечной системой впрыска. На рис.2 представлено поперечное сечение цилиндра двигателя GDI с вертикальным впускным каналом и вид поршня с головкой с характерной чашей.

Рисунок 2.

Характерные особенности двигателя Mitsubishi GDI 4G93 [6]: а) поперечное сечение цилиндра с заметным движением всасываемого воздуха; б) Поршень с чашей в короне

В последующие годы и другие автомобильные концерны начали применять различные двигатели SI с непосредственным впрыском бензина.Здесь следует упомянуть двигатели D4 Toyota, FSI Volkswagen, HPi Peugeot — группа Citroën, SCi Ford, IDE Renault, CGi Daimler-Benz или JTS Alfa Romeo. Процесс образования однородной и слоистой смеси в двигателе FSI представлен на рисунке 3.

Рисунок 3.

Формирование слоистой и однородной смеси в двигателе FSI (Audi AG)

В 2005 году система впрыска D-4S был представлен Toyota Corporation. Эта система впрыска объединяет функции систем MPI и DI.Для него характерно наличие двух форсунок на каждый цилиндр двигателя. Внедрение такой сложной системы впрыска дает повышение производительности двигателя и снижение расхода топлива по сравнению с двигателями с обоими типами подачи топлива: многоточечной системой и системой прямого впрыска.

1.2. Система двойного впрыска Toyota D-4S

В августе 2005 года Toyota внедрила инновационную систему впрыска топлива в атмосферный двигатель 2GR-FSE, используемый в спортивном седане Lexus IS350 [7].Этот двигатель отличается очень хорошими характеристиками, умеренным расходом топлива и очень низким уровнем выбросов выхлопных газов. На рынке США Lexus IS350 квалифицируется как автомобиль со сверхвысоким уровнем выбросов [8]. Особенностью двигателя 2GR-FSE является использование двух форсунок на каждый цилиндр. Один из них подает топливо в цилиндр, а второй подает его в соответствующий впускной канал. Расположение форсунок в двигателе показано на рисунке 4.

Рисунок 4.

Поперечное сечение головки блока цилиндров двигателя 2GR-FSE [9]; 1 — топливная форсунка, 2 — форсунка прямого действия

Доля топлива x DI , подаваемого непосредственно в камеру сгорания, во всей массе топлива зависит от частоты вращения и нагрузки двигателя.При частичной загрузке масса топлива делится на две топливные системы таким образом, что не менее 30% топлива впрыскивается напрямую, что защищает форсунки прямого действия от перегрева.

На основании анализа процесса сгорания установлено, что для частичной нагрузки двухточечный (на один цилиндр) впрыск топлива вызывает более благоприятное распределение соотношения воздух-топливо в объеме цилиндр, чем в случае, когда вся масса топлива впрыскивается во впускной трубопровод или непосредственно в цилиндр [10].Смесь более однородная. Только вокруг электродов свечи зажигания он немного обогащен по стехиометрическому составу, что сокращает индукционный период и положительно влияет на процесс сгорания. На рисунке 5 показаны результаты измерений распространения фронта пламени в камере сгорания 21 ионизационным датчиком для непрямого впрыска (x DI = 0), прямого впрыска (x DI = 1) и 30% массы топлива. впрыскивается непосредственно в цилиндр (x DI = 0.3).

Рисунок 5.

Распространение фронта пламени для различных долей xDI массы топлива, впрыскиваемого в цилиндр

На Рисунке 6 диаграмма доли x DI массы топлива, впрыскиваемой непосредственно в цилиндр для была представлена ​​вся карта двигателя 2GR-FSE.

Рисунок 6.

Массовая доля топлива, впрыскиваемого непосредственно в цилиндр для двигателя 2GR-FSE

  • Двигатель работает во всем диапазоне скоростей только с непосредственным впрыском топлива при низкой нагрузке, то есть примерно до 0.28 МПа BMEP (среднее эффективное давление в тормозной системе) и для частоты вращения двигателя выше 2800 об / мин, независимо от нагрузки двигателя. Как уже упоминалось выше, в остальной части карты топливо разделено между двумя системами впрыска: прямым и многоточечным.

Применение такой сложной системы впрыска топлива, помимо улучшения кривой крутящего момента, снижает расход топлива двигателем. Карта расхода топлива двигателя 2GR-FSE с отмеченной точкой на наименьшем удельном расходе топлива представлена ​​на рисунке 7.

Рисунок 7.

Карта расхода топлива 2GR-FSE

  • Анализируя рисунки 6 и 7, можно заметить, что область карты расхода топлива двигателя с наименьшим удельным расходом топлива, т.е. ≤ 230 г / кВтч, была получена с двойной впрыск топлива. Вышеуказанное значение удельного расхода топлива соответствует общему КПД двигателя, равному 0,356. На современном этапе развития двигателей внутреннего сгорания этот результат можно считать очень хорошим, тем более, что он был достигнут со стехиометрической смесью, без расслоения, характерного для двигателей, работающих на бедных смесях.Использование двух форсунок на цилиндр также позволило удалить дополнительную заслонку, закрывающую один из впускных каналов, используемых в системе Д-4 [11] для каждого цилиндра при работе двигателя на малых оборотах. Удаление заслонки также положительно сказывается на улучшении объемного КПД двигателя с системой двойного впрыска, особенно для более высоких оборотов при полностью открытой дроссельной заслонке.

Одним из компонентов системы D-4S, который оказал большое влияние на улучшение образования топливной смеси в цилиндре, был инжектор прямого впрыска топлива, образующий двойной веерообразный поток.Он был разработан специально для двигателя 2GR-FSE. Модификация формы форсунки для используемого двигателя 2GR-FSE имеет эффект повышения степени однородности смеси в цилиндре. Пример визуализации распределения состава топливовоздушной смеси в поперечном сечении камеры сгорания, выполненной с помощью Star-CD v.3.150A-tool, был показан на рисунке 8.

Рисунок 8.

Сравнение формирования смесь с использованием обычной форсунки и второй, разработанной для системы D-4S

  • Распределение соотношения воздух-топливо в камере сгорания для смеси, образованной форсункой нового типа, намного выгоднее.В этом случае заряд цилиндра неоднороден только на границе камеры сгорания. Вблизи электродов свечи зажигания нет нежелательных изменений в составе смеси.

Форсунка прямого действия имеет форсунку в виде двух прямоугольных отверстий размером 0,52 х 0,13 мм. Он работает при давлении от 4 до 13 МПа. Расход топлива при давлении 12 МПа составляет 948 см 3 в минуту. С другой стороны, в системе непрямого впрыска использовались форсунки с 12 отверстиями.Форсунки непрямого действия работают при давлении 0,4 МПа. При этом давлении его расход топлива равен 295 см 3 в минуту.

Таким образом, вопрос о двигателях с искровым зажиганием и системой двойного впрыска топлива очень интересен и, что не менее важно, очень актуален. Это происходит в первую очередь из-за возможности снижения выбросов CO 2 и токсичных выхлопных газов в атмосферу при использовании топливных систем с двойным впрыском. Как следствие, авторы поставили задачу определить влияние применения топливной системы двойного впрыска на параметры работы двигателя с гораздо меньшим рабочим объемом, чем в случае двигателей массового производства.

Целью исследования было оценить влияние распределения топлива в системе подачи с двойным впрыском на ее производительность и выбросы выхлопных газов в конкретных точках рабочего диапазона двигателя.

2. Объект исследования

  • В качестве объекта моделирования и экспериментальных исследований был выбран четырехтактный двигатель с искровым зажиганием типа 2SZ-FE производства Toyota для автомобиля Yaris. Основная часть проделанной работы — стендовые испытания.Имитационные исследования также проводились для понимания явлений, которые не могли быть определены в ходе экспериментальных исследований, например визуализация впрыска и сгорания или образования выбранных компонентов выхлопного газа. В таблице 1 приведены основные технические данные испытуемого двигателя.

3

48 Максимальный крутящий момент [Нм] при частоте вращения двигателя [об / мин]

Число цилиндров четыре, рядные
Камера сгорания пятиклапанный тип, 4 клапана на цилиндр
Рабочий объем V ss [дм] 1.298
Диаметр цилиндра x ход [мм] 72,0 x 79,7
Степень сжатия 10,0
Максимальная выходная мощность [кВт] при частоте вращения двигателя [об / мин] 64, 6000

122, 4200

Таблица 1.

Основные технические данные двигателя 2SZ-FE

По сравнению с исходным двигателем, этот двигатель был значительно переработан.Топливные форсунки высокого давления устанавливались в головку блока цилиндров двигателя, чтобы обеспечить впрыск топлива в камеры сгорания каждого цилиндра. Реализованные форсунки производства Bosch использовались, в частности, в двигателях FSI Volkswagen с непосредственным впрыском бензина. Форсунки устанавливались под углом 68 градусов к вертикальной оси цилиндра, т.е. параллельно оси впускного канала в точке крепления впускного коллектора. Расположение форсунок системы прямой и косвенной подачи топлива представлено на рисунке 9.

Рисунок 9.

Расположение форсунок прямой и косвенной подачи топлива; 1 — Поршень, 2 — Выпускной канал, 3 — Свеча зажигания, 4 — Выпускной клапан, 5 — Впускной клапан, 6 — Непрямая форсунка, 7 — Впускной канал, 8 — Прямая форсунка

Двигатель был установлен на испытательном стенде и соединен с вихретоковым дино. Динамометрический стенд имеет электронную систему измерения и контроля, которую можно подключить к ПК для упрощения сбора данных. Для достижения поставленных целей оригинальный блок управления двигателем был заменен системой управления, которую можно программировать в режиме реального времени.Такая система имеет возможность управлять системой зажигания, системой впрыска и различными другими системами. Важной особенностью системы является возможность независимого управления временем и синхронизацией впрыска для двух комплектов форсунок и работа в замкнутом контуре с широкополосным датчиком кислорода типа LSU 4.2. Другим устройством, используемым для управления инжектором высокого давления, был пиковый и фиксирующий драйвер, работающий при напряжении около 100 В. Общий вид испытательного стенда представлен на рисунке 10.

Рисунок 10.

Общий вид испытательного стенда [12]; 1 — Двигатель, 2 — ПК, 3 — Программируемая система управления двигателем, 4 — Цифровой осциллограф, 5 — ПК с системой сбора данных, 6 — Привод дроссельной заслонки, 7 — Расход топлива счетчик 8 — Газоанализатор, 9 — Топливный насос высокого давления, 10 — Вихретоковый динамометр

Схема системы подачи топлива показана на рисунке 11. Системы прямого и многоточечного впрыска были разделены на схеме. Система непрямого впрыска была отмечена синим цветом, система прямого впрыска — красным, а элементы, общие для обеих систем, — зеленым.Массовый расход топлива в прямом и косвенном контуре системы впрыска измерялся гравиметрическим расходомером.

Рисунок 11.

Схема топливной системы; 1 — Топливный бак, 2 — Запорный клапан, 3 — Топливный фильтр, 4 — Подкачивающий насос DI, 5 — Электроклапаны для измерения расхода топлива в DI-контуре, 6 — Регулятор низкого давления DI-контура, 7 — Высокое давление насос, 8 — Регулятор высокого давления DI-контура, 9 — Двигатель, 10 — Форсунка прямого впрыска, 11 — Форсунка прямого впрыска, 12 — Форсунка непрямого действия, 13 — Впускной патрубок, 14 — Распределитель непрямого топливные форсунки, 15 — манометр DI, 16 — топливный насос MPI, 17 — регулятор давления MPI-контура, 18 — расходомер топлива

3.Экспериментальные исследования

В данной работе представлены результаты испытаний двигателя, в ходе которых было изменено распределение топлива между системой непосредственного впрыска и системой распределенного впрыска.

Для каждого испытания поддерживались постоянные моменты впрыска и зажигания, а также стехиометрический состав смеси. Время прямого впрыска было определено в предварительных испытаниях при 281 ° CA перед ВМТ, что означает прямой впрыск топлива во время такта впуска. Также при предварительных испытаниях двигателя давление прямого впрыска топлива было установлено на уровне 8 МПа.Время впрыска для обеих систем подачи топлива было отрегулировано таким образом, чтобы поддерживать стехиометрический состав смеси при различных значениях доли топлива, впрыскиваемого непосредственно в цилиндр x DI .

3.1. Влияние применения системы двойного впрыска на производительность и расход топлива

На основании результатов вышеупомянутых испытаний кривые крутящего момента T и удельного расхода топлива на тормоз BSFC в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI .На рис. 12 показаны аппроксимированные параболами кривые крутящего момента и удельного расхода топлива, полученные при открытии дроссельной заслонки 13% и частоте вращения двигателя 2000 об / мин.

Рис. 12.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 13% и частоты вращения двигателя 2000 об / мин

Для случая, показанного в этом Из рисунка видно, что максимальный крутящий момент и минимальный удельный расход топлива были получены для доли топлива, впрыснутой непосредственно в цилиндр x DI , равной почти 0.4. Результаты, полученные с этим распределением топлива между системой прямого впрыска и системой впрыска в порт, показывают значительные различия, особенно по сравнению с результатами испытаний, полученными, когда все количество топлива впрыскивается непосредственно в цилиндр.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI , полученные при 2000 об / мин и открытии дроссельной заслонки 20%, показаны на рисунке 13.

Рисунок 13.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 20% и частоты вращения двигателя 2000 об / мин

  • Для открытия дроссельной заслонки, равного 20% и частота вращения двигателя 2000 об / мин. Наилучшие результаты по удельному расходу топлива и крутящему моменту наблюдались при соотношении топлива, впрыскиваемом непосредственно в цилиндр, равном 0,62. В описанном случае указанные рабочие параметры двигателя получили значительное улучшение по сравнению с ситуацией, когда все количество топлива впрыскивается во впускные каналы.

На рисунке 14 показаны графики общего КПД двигателя и относительного увеличения общего КПД двигателя Δη DI + MPI для режима двойного впрыска по сравнению с работой с непрямым впрыском топлива, разработанные на основе результатов рисунков 12 и Рис. 13. Кривые, показанные на Рис. 14, являются результатом параболической аппроксимации точек, полученных в результате расчетов.

Рисунок 14.

Общий КПД двигателя ηtot и относительное увеличение общего КПД двигателя ΔηDI + MPI для режима двойного впрыска по сравнению с работой с непрямым впрыском топлива

Общий КПД двигателя определяется по формуле (1).Для расчета была принята теплотворная способность бензина W d = 44 000 кДж / кг [13].

ηtot = 3,6⋅106BSFC⋅WdE1

Наибольшее увеличение общего КПД Δη DI + MPI , показанное на Рисунке 14, составило 4,58% для первого случая и 2,18% во второй контрольной точке. В первом случае наилучшая эффективность работы наблюдалась при доле впрыскиваемого непосредственно в цилиндр топлива, равной 0,62. Во второй ситуации наибольшее улучшение общего КПД двигателя в отношении КПД, полученного при непрямом впрыске топлива, имело место, когда доля топлива, впрыскиваемого непосредственно в цилиндр, равна 0.39.

Анализ результатов показывает, что с помощью системы двойного впрыска можно улучшить крутящий момент, создаваемый двигателем, и, что еще более важно, снизить удельный расход топлива. Это означает повышение общей эффективности.

3.2. Состав выхлопных газов при работе с двойным впрыском

  • В ходе описанных выше испытаний двигателя с помощью газоанализатора Arcon Oliver K-4500 были измерены объемные концентрации отдельных компонентов выхлопных газов в выхлопном коллекторе Концентрация окиси углерода CO, двуокиси углерода Были исследованы CO 2 , оксид азота NO, несгоревшие углеводороды HC и дополнительно температура выхлопных газов t exh .Общая концентрация углеводородов в выхлопных УВ была преобразована газоанализатором в гексан.

На рисунке 15, зарегистрированном на скорости 2000 об / мин и при открытии дроссельной заслонки 13%, показаны следы объемных концентраций вышеуказанных химикатов и температуры выхлопных газов в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр.

Рисунок 15.

Температура и объемные концентрации выбранных компонентов выхлопных газов, полученные при 2000 об / мин с открытием дроссельной заслонки 13%

  • Анализ Рисунка 15 показывает, что с увеличением доли топлива, впрыскиваемого непосредственно в В цилиндре концентрация окиси углерода и углеводородов немного увеличивается, а концентрации окиси азота и двуокиси углерода уменьшаются.Также немного снизилась температура газа, выходящего из цилиндров двигателя. Разница между концентрацией NO для впрыска только во впускной канал и только при непосредственном впрыске в цилиндр невелика и составляет примерно 170 ppm. Концентрация УВ для прямого впрыска при аналогичном сравнении увеличивается несколько больше, но не достигает особо высокого значения — примерно 290 ppm.

  • На следующем рисунке 16 показаны записанные при скорости 2000 об / мин и открытии дроссельной заслонки 20% следов температуры и концентраций ранее упомянутых компонентов выхлопных газов.

Рисунок 16.

Графики температуры и концентрации отдельных компонентов выхлопа, полученные при оборотах двигателя 2000 об / мин и открытии дроссельной заслонки 20%

Характер изменения параметров, представленных на рисунке 16, существенно не отличается из наблюдаемых в предыдущем случае.

3.3. Влияние использования системы двойного впрыска на процесс сгорания

Во второй части экспериментальных исследований для частоты вращения двигателя 2000 об / мин, открытия дроссельной заслонки 20% и стехиометрического состава смеси были зарегистрированы формы сигналов указанного давления.Как и в ранее проведенных исследованиях в этих условиях, угол опережения зажигания составлял 14 ° CA перед ВМТ. Измеренное абсолютное давление во впускном коллекторе составило 0,079 МПа. Давление прямого впрыска было установлено на 8 МПа, а угол начала впрыска составлял 281 ° CA перед ВМТ. Доля топлива, впрыскиваемого непосредственно в цилиндр в режиме двойного впрыска, равнялась 0,62. Для такого значения был зафиксирован минимум удельного расхода топлива для данных условий.

Испытания проводились для определения различий в процессе сгорания в двигателе для непрямого впрыска топлива и для двойного впрыска с заданной долей топлива, впрыскиваемой непосредственно в цилиндр, что обеспечивает минимальный удельный расход топлива.Для этого использовались оптоэлектронный датчик давления Optrand C82255-SP, прикрепленный к специально подготовленной свече зажигания, и угловой инкрементальный энкодер Omron E6B-CWZ3E. Данные с обоих датчиков записывались с помощью портативного ПК с картой National Instruments DAQCard-6062, работающей с приложением, созданным в среде LabView.

Индикаторные диаграммы, полученные для работы только с непрямым впрыском и с использованием системы двойного впрыска, показаны на Рисунке 17.

Рис. 17.

Сравнение закрытых индикаторных диаграмм для непрямого впрыска и для двойного впрыска с 62% топлива, впрыскиваемым непосредственно в цилиндр, частота вращения двигателя 2000 об / мин, открытие дроссельной заслонки 20%

Увеличенная площадь поверхности графика, отображающего положительную работу цикла двигателя. Пиковое давление сгорания достигло значения 4,23 МПа при 21 ° CA после ВМТ с непрямым впрыском и 4,60 МПа при 19,5 ° CA после ВМТ в режиме двойного впрыска.Таким образом, пиковое давление сгорания при двойном впрыске выше на 0,37 МПа по сравнению с результатом, полученным для впрыска только во впускные каналы. Для более точного определения различий, возникающих по ходу индикаторных диаграмм, указанное среднее эффективное давление IMEP было рассчитано на основе записанных данных соответственно для двух случаев. Применялся метод численного интегрирования соответствующих участков графиков рисунка 17. Для обеспечения повышенной точности использовался метод трапеций.

Среднее эффективное давление торможения BMEP было определено по формуле (2) для обеих рассматриваемых топливных систем:

BMEP = π⋅τ⋅T500⋅VssE2

Однако на основе уравнения (3) можно было рассчитать тепловой КПД двигателя в обоих случаях:

ηthr = NiNc = 30⋅IMEP⋅Vss⋅nGe⋅WdE3

Результаты расчетов среднего эффективного давления в тормозах, теплового КПД двигателя и указанного среднего эффективного давления представлены в таблице 2.

IMEP [МПа]

xDI = 0 (MPI) xDI = 0.62 (MPI + DI) Увеличение от xDI = 0, [%]
BMEP [МПа] 0,745 0,769 3,22
0,955 2,585
Тепловой КПД η th [-] 0,395 0,410 3,797

Таблица 2.

Сравнение показателей работы двигателя при многоточечном впрыске топлива и с двойным впрыском топлива

Используя систему двойного впрыска около 2.Было достигнуто увеличение указанного среднего эффективного давления на 6% и увеличение теплового КПД примерно на 3,8% по сравнению с впрыском только в каналы впуска. Эти значения аналогичны значениям, полученным при соответствующем сравнении удельного расхода топлива для рассматриваемых условий работы двигателя. На основании этого можно сделать вывод, что увеличение указанного среднего эффективного давления и теплового КПД показывает улучшенную эффективность сгорания смеси, приготовленной с помощью системы двойного впрыска.Этот факт можно объяснить тем, что моделирование усиливает турбулентность заряда, когда часть топлива впрыскивается непосредственно в цилиндр.

Последним показателем в этой части анализа индикаторных диаграмм является скорость подъема давления dp c / dα. Кривая зависимости этого параметра от угла поворота коленчатого вала показана на Рисунке 18 для ключевой части индикаторной диаграммы. Скорость повышения давления была принята в качестве основного индикатора возможности возникновения детонационного горения.

Рис. 18.

Скорость повышения давления как функция угла поворота коленчатого вала, полученная для обеих рассматриваемых топливных систем

  • Анализ результатов указывает на увеличение скорости повышения давления в случае двойного впрыска. топлива. Пиковая скорость повышения давления составила 0,181 МПа / ° СА для впрыска топлива во впускные каналы и 0,253 МПа / ° СА для двойного впрыска топлива. Увеличение скорости повышения давления не является благоприятным явлением, поскольку оно обеспечивает повышенную нагрузку на коленчатый вал, однако значение, полученное для системы двойного впрыска, невелико.Следует отметить, что возникновение детонации в двигателе с искровым зажиганием характеризуется возникновением пиковых скоростей повышения давления, обычно превышающих 0,5 МПа / ° CA [14].

Второй этап анализа диаграмм давления в цилиндрах, полученных для обеих топливных систем, был сфокусирован на выявлении процесса сгорания смеси. Применен метод анализа индикаторной диаграммы, позволяющий определить массовую долю сгоревшего (MFB) в цилиндре в зависимости от угла поворота коленчатого вала.Этот метод широко описан, среди прочего, в [15].

На рисунке 19 показаны кривые массовой доли сожженного топлива в зависимости от угла поворота коленчатого вала, полученные для обеих топливных систем. На рисунке 26 линии ординат, соответствующие массовой доле сожженной в цилиндре 0,1 и 0,9, выделены жирным шрифтом. Указанные значения важны из-за процесса сгорания.

.

Газотурбинные двигатели — Секция сгорания (Часть первая)

В секции сгорания находится процесс сгорания, который повышает температуру воздуха, проходящего через двигатель. Этот процесс высвобождает энергию, содержащуюся в топливно-воздушной смеси. Основная часть этой энергии требуется на турбине или ступенях турбины для приведения в действие компрессора. Около 2/3 энергии используется для привода компрессора газогенератора. Оставшаяся энергия проходит через оставшиеся ступени турбины, которые поглощают больше энергии для привода вентилятора, выходного вала или гребного винта.Только чистый турбореактивный двигатель позволяет воздуху создавать всю тягу или движение, выходя из задней части двигателя в виде высокоскоростной струи. Эти другие типы двигателей имеют некоторую реактивную скорость на выходе из задней части двигателя, но большая часть тяги или мощности создается дополнительными ступенями турбины, приводящими в движение большой вентилятор, воздушный винт или лопасти винта вертолета.

Основная функция секции сгорания — это, конечно, сжигание топливно-воздушной смеси, тем самым добавляя тепловую энергию к воздуху.Чтобы сделать это эффективно, камера сгорания должна:

  • Обеспечивать средства для правильного смешивания топлива и воздуха, чтобы гарантировать хорошее сгорание,
  • Эффективно сжигать эту смесь,
  • Охлаждать горячие продукты сгорания до температуры, равной температуре на входе турбины направляющие лопатки / лопатки выдерживают в условиях эксплуатации
  • и

  • подают горячие газы в секцию турбины.

Секция сгорания расположена непосредственно между секциями компрессора и турбины.Камеры сгорания всегда располагаются коаксиально с компрессором и турбиной независимо от типа, поскольку для эффективного функционирования камеры должны находиться в проходном положении. Все камеры сгорания содержат одни и те же основные элементы:

  1. Кожух
  2. Перфорированный внутренний вкладыш
  3. Система впрыска топлива
  4. Некоторые средства для первоначального зажигания
  5. Система слива топлива для слива несгоревшего топлива после остановки двигателя

В настоящее время их три основные типы камер сгорания, подробно описаны только вариации внутри типа.К этим типам относятся:

  1. Цанговый тип
  2. Цанговый тип
  3. Кольцевой

Камера сгорания баночного типа типична для камер сгорания, используемых на турбовальных валах и ВСУ. [Рис. 1-52] Каждая из камер сгорания баночного типа состоит из внешнего кожуха или корпуса, внутри которого находится гильза камеры сгорания из перфорированной нержавеющей стали (высокотемпературной) или внутренняя гильза. [Рис. 1-53] Внешний кожух снимается, чтобы облегчить замену футеровки.

Figure 1-52. Can-type combustion chamber. Рисунок 1-52.Камера сгорания баночного типа.

Более старые двигатели с несколькими баками сгорания имели каждый бак с соединительной (распространяющей пламя) трубкой, которая была необходимой частью камер сгорания бакового типа. Поскольку каждая канистра представляет собой отдельную горелку, работающую независимо от других канистр, должен быть какой-то способ распространения горения во время начальной операции запуска. Это достигается соединением между собой всех камер. Поскольку пламя зажигается свечами искрового воспламенителя в двух нижних камерах, оно проходит через трубки и воспламеняет горючую смесь в соседней камере и продолжается до тех пор, пока все камеры не горят.

Figure 1-53. Inside view of a combustion chamber liner. Рисунок 1-53. Гильза камеры сгорания, вид изнутри.

Жаровые трубы различаются по деталям конструкции от одного двигателя к другому, хотя основные компоненты почти идентичны. [Рис. 1-54] Ранее упомянутых искровых воспламенителей обычно бывает два, и они расположены в двух камерах сгорания баночного типа.

Figure 1-54. Interconnecting flame tubes for can-type combustion chambers. Рисунок 1-54. Соединительные жаровые трубы для камер сгорания баночного типа.

Еще одним очень важным требованием к конструкции камер сгорания является обеспечение средств слива несгоревшего топлива.Этот дренаж предотвращает отложение смолы в топливном коллекторе, форсунках и камерах сгорания. Эти отложения возникают из-за остатков, оставшихся после испарения топлива. Вероятно, наиболее важной является опасность последующего возгорания, если топливо может скапливаться после остановки. Если топливо не слить, существует большая вероятность того, что при следующей попытке пуска излишек топлива в камере сгорания воспламенится, а температура выхлопных газов превысит безопасные рабочие пределы.

Бортовой механик рекомендует

.

Каковы преимущества паровых двигателей и других двигателей внешнего сгорания?

Основные ограничения или недостатки паровой машины или двигателя внешнего сгорания приведены ниже:

1. Паровой двигатель огромен и тяжел. (То есть двигатель внешнего сгорания огромный и тяжелый). Из-за большого котла и печи паровой двигатель огромен, тяжел и неповоротлив. Поскольку котел паровой машины очень тяжелый, паровой двигатель нельзя использовать для управления небольшими транспортными средствами, такими как автомобили и автобусы.

2. Паровой двигатель не запускается сразу. (То есть двигатель внешнего сгорания запускается не сразу). Прежде чем паровой двигатель сможет запуститься, мы должны развести угольный костер, чтобы получить пар. Этот процесс занимает много времени, и поэтому паровой двигатель нельзя запустить в мгновение ока.

3. Использование парового двигателя небезопасно. (То есть двигатель внешнего сгорания использовать небезопасно). Паровая машина не очень безопасна в использовании, потому что ее котел может взорваться из-за чрезмерного давления пара.Чтобы получить максимальную отдачу от тепловой энергии, пар должен поддерживаться при высокой температуре и очень высоком давлении в котле. Если случайно давление пара слишком сильно возрастет, котел может взорваться, что приведет к гибели людей и материальному ущербу. Таким образом, наиболее опасной частью паровой машины (или двигателя внешнего сгорания) является ее котел, в котором вырабатывается пар. Фактически, на заре паровой машины не было подходящих материалов для изготовления котлов, которые могли бы выдерживать высокое давление пара.Даже строительная техника была несовершенной. Итак, на заре создания паровой машины было много несчастных случаев из-за взрыва котлов, из-за плохих материалов, использованных при их изготовлении, и неправильной конструкции котлов.

4. Паровая машина имеет низкий КПД. (То есть двигатель внешнего сгорания имеет низкий КПД). Тепловой КПД паровой машины составляет около 20%, что означает, что паровая машина может преобразовывать в работу только около 20% тепловой энергии.Одна из причин низкого КПД паровой машины заключается в том, что используемый в ней пар не имеет очень высокой температуры. Другой причиной низкого КПД паровой машины является потеря тепла из-за большой открытой поверхности паровой машины, особенно котла и цилиндра.

Из-за этих ограничений (или недостатков) двигателя внешнего сгорания был изобретен другой двигатель, названный двигателем внутреннего сгорания. Мы подойдем к этому через некоторое время. Теперь мы обсудим некоторые преимущества двигателя внешнего сгорания (паровой машины) перед ветряными и водяными мельницами.

Преимущества парового двигателя перед ветряными и водяными мельницами:

1. Паровой двигатель (или двигатель внешнего сгорания) может быть расположен где угодно, потому что вода нагревается в отдельном котле для производства пара. Паровую машину с котлом можно было взять с собой на любое место работы. С другой стороны, дующий ветер или проточная вода доступны не везде, чтобы запустить ветряные или водяные мельницы.

2. Паровой двигатель (или двигатель внешнего сгорания) можно использовать в любое время, потому что пар может производиться в любое время.С другой стороны, ветряную мельницу или водяную мельницу можно использовать только при наличии ветра и проточной воды.

3. Паровой двигатель (или двигатель внешнего сгорания) может использоваться для запуска поездов, перемещающихся из одного места в другое, но ветряные и водяные мельницы для этой цели использовать нельзя.

4. Паровой двигатель (или двигатель внешнего сгорания) намного мощнее ветряной или водяной мельницы.

5. Паровой двигатель (или двигатель внешнего сгорания) может использовать практически любой горючий материал для топлива, угля, масла, старой мебели,… всего, что можно положить в топку.Это делает его очень гибким источником энергии, так как можно использовать все, что находится поблизости.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о