Что такое степень сжатия двигателя: Что такое степень сжатия двигателя и чем она отличается от компрессии
Что такое степень сжатия двигателя и чем она отличается от компрессии

Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией. 

Содержание

Что такое степень сжатия и чем она отличается от компрессии

степень сжатия

Иллюстрация степени сжатия 10:1

Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.

Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.

Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см2, а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.

На что влияет степень сжатия двигателя

нормальное сгорание смеси и детонация

Нормальное сгорание смеси (вверху) и детонация (внизу)

Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.

У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.

Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива. 

Читайте также: Какая компрессия должна быть в двигателе.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

  • CR=(V+C)/C,
  • где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

  • При форсировании силового агрегата;
  • При его приспособлении для функционирования с топливом другого октанового числа;
  • После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.

Как изменить степень сжатия двигателя

У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.

Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла. 

Видео на тему

Похожие статьи

Что такое такое степень сжатия двигателя и на что она влияет

Автор Павел Александрович Белоусов На чтение 7 мин. Просмотров 41

От величины сжатия зависит термический КПД двигателя. Но с ростом степени повышается и риск детонации, поэтому при форсировке и капитальном ремонте следует уделить время расчетам. Давайте рассмотрим, как увеличить степень сжатия двигателя, взаимосвязь компрессии и степени, и чем примечателен двигатель цикла Миллера-Аткинсона.

схема ДВС в разрезе

Как связаны степень сжатия и компрессия двигателя?

Степень сжатия в цилиндрах мотора – величина абсолютная и рассчитывается математически. На практике это соотношение отображает коэффициент сжатия поступившей в цилиндр топливной смеси на такте впуска. Понятие компрессии означает пиковое давление в камере сгорания в конце такта сжатия и может быть измерено практически. Компрессия хоть и является производной от степени сжатия, но зависит от многих факторов:

  • герметичность цилиндро-поршневой группы (ЦПГ) и клапанного механизма;
  • мощность стартера, состояние АКБ и качество контактов, влияющее на количество оборотов стартера.

Форсирование двигателя путем увеличения степени сжатия

Чем выше степень, тем горячее воздух в конце такта сжатия и тем выше КПД двигателя. Но повышение одного параметра не гарантирует линейное возрастание второго. Наибольший прирост мощности ощущается при повышении степени до 10-11 единиц.

К примеру, увеличив степень сжатия стандартного ВАЗовского мотора с 9.8 до 11, мы в теории получаем прирост термического КПД на 4%. Тест на стенде при этом покажет куда более скромное значение – 2,5%. Повысив степень сжатия того же мотора еще на единицу, мы получим фактическую прибавку в 4.5%. Моментная характеристика возрастет главным образом на низких и средних оборотах. Дальнейшее увеличение степени сжатия без перехода на высокооктановое спортивное топливо и вовсе не даст результат.

диаграмма степени сжатия

Причина такого явления —  в детонации, которая возникает в случае слишком высокого пикового давления в камере сгорания. При контакте с разогретым воздухом в таком случае смесь самовоспламеняется еще до момента подачи искры. При этом фронт пламени распространяется со скоростью более 2000 м/с, тогда как значение при нормальном сгорании не превышает 250-300 м/с.

Ударная волна такой силы оказывает разрушительное давление на цилиндры, стенки камеры сгорания, поршни. Также значительно повышается температура выхлопных газов, что приводит к прогоранию днища поршня, клапанов.

Поэтому тюнинг со сжатием следует проводить после точного математического расчета и с прицелом на октановое число бензина.

Основные методы увеличения

  1. Уменьшение толщины ГБЦ, БЦ. С привалочной плоскости головки и блока методом фрезеровки либо шлифовки снимается слой металла и уменьшается объем камеры сгорания.
  2. Установка поршней с выпуклостями. Цель, как и в предыдущем методе – уменьшение объема камеры сгорания.
  3. Увеличение хода поршня за счет установки другого коленчатого вала, шатунов.

Как работает двигатель с изменяемой степенью сжатия?

До недавнего времени показатель степени закладывался инженерами на этапе разработки и был фиксированным вне зависимости от режима работы двигателя. Нормальное значение для современных бензиновых моторов варьируется от 8 до 14 единиц, традиционно высокая степень сжатия у дизельных моторов – 18-23.

Ужесточение экологических норм заставляет гениев инженерной мысли искать новые пути увеличения термического КПД. Одно из таких решений – двигатель с изменяемой степенью сжатия. Было разработано несколько вариантов динамического изменения степени:

  • дополнительная секция в полости ГБЦ. Открытие секции позволяет увеличить объем камеры сгорания, уменьшая тем самым степень. Система не получила распространения из-за избыточного усложнения конструкции ГБЦ;
  • поршни с изменяемой высотой. Конструкция получилась слишком громоздкой, появились проблемы с перекосом поршней и уплотнением ЦПГ;
  • регулировка высоты подъема коленчатого вала. Изменение степени сжатия осуществляется за счет специальных эксцентриковых муфт, которые регулируют высоту опорных подшипников коленвала. Технология долгое время тестировалась концерном VAG, но так и не вошла в серию;
  • регулировка высоты поднятия ГБЦ. Специальный механизм с электроприводом и шарнирное соединение частей блока двигателя позволяли регулировать степень от 8 до 14 единиц. Разрабатывалась технология инженерами SAAB, но из-за ненадежности резинового кожуха, герметизирующего подвижные части блока, и излишней сложности конструкции также не пошла в серию;

2

  • шатун с изменяемой длиной. Высота шатуна регулировалась специальным реечным механизмом с помощью давления масла. Как и в предыдущих случаях, разработка французских инженерах не была внедрена в массовое производство;

3

  • траверсный механизм сочленения шатуна с коленчатым валом. За счет изменения угла поворота траверсы уменьшается либо увеличивается ход поршня. Разработка инженеров Infiniti используется на двухлитровом моторе VC-T, который сейчас устанавливается на кроссовер QX50. Двигатель развивает максимальную мощность в 268 л.с. и пиковый крутящий момент 380 Нм.

4

Цикл Миллера-Аткинсона

Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.

Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.

Математический расчет

Степень сжатия двигателя внутреннего сгорания равняется объему камеры сгорания к рабочему объему цилиндра и рассчитывается по формуле (V + C)/C = CR, где

  • V — объем цилиндра, когда поршень находится в нижней мертвой точке (НМТ). Для расчета необходимо сумму объемов всех цилиндров (указывается в технической характеристике ДВС) разделить на количество котлов;
  • С — объем камеры сгорания, когда поршень в верхней мертвой точке (ВМТ). Включает в себя объем полости ГБЦ, прокладки ГБЦ и выемок в цилиндре. Если поршень имеет выпуклость, ее объем отнимается от общего объема камеры сгорания.

Вычислить степень сжатия математически довольно непросто из-за сложной геометрической формы камеры сгорания. Поэтому на практике применяются 2 основные методы вычисления.

Видео:Как измерить степень сжатия правильно.

Практический расчет методом проливки

Суть измерения заключается в поочередном заполнении жидкостью площади над поршнем, когда тот находится в верхней мертвой точке, и стенок камеры сгорания ГБЦ. Для измерения нам необходим кусок оргстекла, в котором будут пропилены отверстия для вкручивания болтов ГБЦ и отверстие для заливки жидкости. Между оргстеклом и блоком необходимо установить уже использованную (обжатую) прокладку. Стенки цилиндров для увеличения гидроплотности необходимо смазать густой консистентной смазкой (литиевой либо обычным солидолом).

Притянув оргстекло болтами, заполните образовавшейся объем жидкостью. Объем поместившейся воды будет соответствовать объему надпоршневого пространства. Аналогичный тест проводится и с головкой блока. При этом клапана должны быть притерты, между седлами и тарелками нанесена консистентная смазка. Сумма объема залитых жидкостей и будет объемом камеры сгорания.

Чтобы рассчитать степень сжатия на онлайн-калькуляторе, также будет необходимо измерить величину хода поршня и диаметр цилиндра. Все эти значения помогут вычислить объем двигателя, который изменяется при каждой фрезеровке плоскостей БЦ, ГБЦ, установке поршней иной геометрической формы, расточки цилиндров либо установке других шатунов, коленчатого вала.

Можно ли рассчитать степень, измерив компрессию?

схема сжатия топлива
Компрессия напрямую зависит не только от понятия степени сжатия двигателя, но и от природы сжимаемого газа и условий в камере сгорания. На практике зависимость этих параметров выливается в формулу Р = Ро*Ɛƴ, где

  • Ро – начальное давление в цилиндре, принимаемое за 1;
  • Ƴ – адиабатический показатель для воздуха. В двигателе внутреннего сгорания при сжатии часть тепла отдается стенкам цилиндра, камеры сгорания; происходит утечка части газа через неплотности, а воздух перемешан с частичками топлива, поэтому процесс считается недиабетическим. Показатель политропы при этом равняется не эталонным 1.4, а приближенным к фактическим 1.2.

Все это значит, что, измерив компрессию, мы можем вычислить показатель степени сжатия двигателя. К примеру, при компрессии 15,8 степень сжатия будет близка к 10 единицам. Чтобы уменьшить погрешность, нужно соблюсти все правила измерения компрессии:

  1. Свечи должны быть выкручены.
  2. Дроссель открыт на 100%.
  3. Отключена подача топлива.
  4. АКБ должна быть полностью заряжена. При этом емкости должно хватать на измерения компрессии во всех котлах.
  5. Стартер должен быть исправен, а на проводах его питания отсутствует значительное падение напряжение из-за окислов.
Компрессия и степень сжатия двигателя. Что это такое?

Начинающие автолюбители, которые только недавно обзавелись машиной, очень часто пытаются разобраться в том, что находится внутри, то есть под капотом. Особый интерес у человека вызывает двигатель, так как строение у этого агрегата очень сложное, а разбираться в этом нужно, дабы сэкономить деньги в случае поломки.

Ведь если хорошо разбираться во всем этом, то можно и самостоятельно починить свою машину, не обращаясь в сервисный центр. Неопытные автомобилисты часто путают понятия «компрессия» и «степень сжатия», хотя они не оказывают влияние один на другой. Стоит сказать, что компрессия меняется в период эксплуатации машины, а степень сжатия – величина безразмерная и относительная.

Степень сжатия

Степень сжатия — расчетная величина, показывает соотношение объемов до сжатия и после.

Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией. 

Что такое степень сжатия и чем она отличается от компрессии

Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.

Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.

Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси.

Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см2, а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.

На что влияет степень сжатия двигателя

Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.

У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.

Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

  • CR=(V+C)/C,
  • где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

  • При форсировании силового агрегата;
  • При его приспособлении для функционирования с топливом другого октанового числа;
  • После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.

Как изменить степень сжатия двигателя

У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.

Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла. 

На форсированном моторе

Степень сжатия. В зависимости от конечной задачи, степень сжатия может серьезно варьироваться, достигая величин в 11 — 11.5 . Все это направлено на снятие максимальной мощности с мотора конкретного объема. Чем выше степень сжатия — тем выше удельная мощность. Правда при этом неизбежно снизится ресурс и резко возрастает риск проблем с мотором при заправке некачественным топливом. Одна заправка сомнительным топливом может быстро кончить «зажатый» мотор. Так что при форсировании мотор сэкономить на качестве бензина не удастся.Поэтому, при тюнинге двигателя степень сжатия увеличивается не очень значительно, обычно что бы перейти на марку бензина, следующую за уже используемой по октановому числу. В принципе, косвенно, о величине степени сжатия можно судить по марке используемого бензина — на АИ-80 можно ездить при степени сжатия равной 9.0 , на АИ-92 — до 10.0 (при условии, что бензин соответствует заявленным характеристикам ).Поднятие степени сжатия — сложный процесс, требующий точных расчетов и очень высокой квалификации моториста. Поэтому самостоятельно этим заниматься крайне не рекомендуется.

Как уже было сказано выше компрессия это давление в цилиндре. Именно поэтому компрессия зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии. Для этого необходимо: двигатель прогрет, АКБ полностью заряжена, дроссель открыт, воздушный фильтр снят, все свечи выкручены. В таком режиме полностью заряженная АКБ позволит стартеру раскрутить двигатель до 200 об/мин. Компрессия во всех цилиндрах должна быть ровной. При снижении уровня компрессии необходимо выяснить причину падения. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 гр. моторного масла. Процедуру замера повторяют. Если показания манометра выросли — причина падения в поршне.

Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

Почему для двигателей так важна степень сжатия, и на что она влияет.




Вот что на самом деле означает
 

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок. 

 

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители. 

 

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

 Вот что на самом деле означает

Двигатель Toyota «Dynamic Force»

 

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран. 

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей. 

 

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение. 

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).  




Вот что на самом деле означает
 

Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

 

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах). 

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия. 

 

Вот что на самом деле означает

 

А теперь математический пример соотношения степени сжатия в ДВС. 

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1. 

 

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений. 

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

 

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

 

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень. 

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

 

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

 




Вот что на самом деле означает
 

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

 

Более высокое сжатие в двигателе означает больше мощности, но больше давления

 

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород). 

На приведенном выше графике кривая 1-2 показывает ход сжатия. 

Линия 2-3 показывает сгорание топлива. 

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя. 

 

Если описать все более техническим языком, то эту диаграмму следует понимать так:

 

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке. 

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива. 

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения). 

 

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан. 

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла. 

 

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия. 

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла. 

 

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность




Вот что на самом деле означает
 

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия. 

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

 




Вот что на самом деле означает

 

Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql). 

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

 

 Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

 

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше. 

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

 

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы. 

 




Вот что на самом деле означает
Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1. 

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности. 

 

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

 

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине. 

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

 

Какой бензин лучше?

 

Почему премиум бензин является пустой тратой денег для большинства автомобилей

 

Сколько энергии в различных видах топлива

 

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля. 

 

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине. 

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя. 

 




Вот что на самом деле означает
Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

Вот что на самом деле означает

 

Вот что на самом деле означает

 

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

 

Существуют ли ограничения по увеличению степени сжатия в двигателях

Вот что на самом деле означает  

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

 

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире. 

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур). 

 

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия. 

 

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях. 

Как рассчитать и изменить степень сжатия двигателя
string(10) "error stat"
string(10) "error stat"

Одним из главнейших технических
показателей автомобильного мотора является коэффициент сжатия. Он показывает соотношение разницы между объёмом
свободного участка над цилиндровым поршнем и под ним в крайних его положениях.

Что такое степень сжатия двигателя

Условно величину сжатия представляют и как
соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно
эта степень обусловлена конструкцией автомобильного двигателя, и может быть
высокой или низкой.

Двигатель

Перед непосредственным процессом
воспламенения горючей смеси, поршни сжимают топливо до определённого объёма.
Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии
проектирования. Узнав количественное соотношение данной величины к объёму
камеры сгорания, можно делать различные выводы.

На бензиновых силовых установках
показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия
двигателя или ССД, тем больше удельная мощность
мотора. Однако при сильном увеличении данного показателя снижается ресурс
агрегата, особенно при заправке низкосортным бензином. На дизельных моторах,
ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.

В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.

На что она влияет

ССД непосредственно определяет объём
работы, произведённой ДВС. Чем изначально выше рассчитана
степень сжатия, тем продуктивнее будет воспламенение.
Пропорционально увеличится и отдача мотора. Вспомним, как разработчики в 90-е годы
старались повышать этот показатель, полностью не модернизируя двигатель.  Таким
способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая
при этом много средств. Но что самое интересное — моторы в этом случае не
потребляли больше горючего, а даже становились экономнее.

Однако всему есть предел, и как было
сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС.
Почему это происходит? Дело в том, что при значительном сжатии топливная смесь
начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает
агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое
ограничение.

Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.

Отличие степени сжатия от компрессии

Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.

Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.

Измерение сжатия двигателя

Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.

Расчет коэффициента сжатия

Ввиду того, что желательно увеличивать
степень сжатия до определённого значения, необходимо уметь рассчитывать этот
показатель. К тому же это даст возможность избежать детонационных моментов,
разрушающих силовой агрегат изнутри в процессе форсирования.

Таким образом, необходимость в измерении
этого показателя требуется в таких случаях, как:

  • форсировка мотора;
  • подгонка под топливо с другим АИ или для метанового топлива с
    октановым числом 120;
  • послеремонтная корректировка.

Турбированные моторы

На турбомоторах расчёт коэффициента сжатия
отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае
величину, полученную в ходе вычислений, умножают на показатель
турбокомпрессора.

Кроме того, при вычислении степени сжатия
турбированных моторов учитывается не только давление наддува, но и показатель
эффективного сжатия, климатические изменения и многое другое. В данном случае
процесс значительно усложняется по сравнению с измерениями на атмосферном
двигателе.

Пример подсчета

Вот как выглядит общепринятая расчётная
формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь
отмечена как «ССД», рабочий объём цилиндра — «РО», а объём камеры сгорания —
«ОКС».

Как высчитывается сжатие

Для расчёта «РО» нужно в первую очередь
разложить единый объём двигателя или литраж на количество используемых
цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения
ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.

Для вычисления параметра «ОКС» специалисты
пользуются проградуированной в см3 трубкой или пипеткой. Под камерой
подразумевается место, где непосредственно происходит возгорание горючего.
Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки. Если
нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем
измерить в мерной посуде или на весах. В этом случае желательно для расчёта
использовать не бензин или солярку, а чистую воду, так как её удельный вес
более соотносим к объёму в см3.

Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.

Как увеличить степень сжатия двигателя

Если необходимо увеличить данный
показатель, используют несколько способов:

  • расточка блока и установка поршней с большим диаметром;
  • уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.

Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.

Интересно, что лучше всех раскрыли
потенциал степени сжатия ДВС японские производители. В то время как европейские
автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось
увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив
изменяемую величину. Но как это возможно без детонационных моментов? Всё
оказалось просто. Оказывается, нужно охладить камеру, где происходит
возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не
обязательно для этого использовать прохладный воздух: достаточно модернизировать
систему выпуска.

Сравнение двигателей с разным коэффициентом сжатия

Приём, давно известный ещё по гоночным
движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов
здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе
выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.

Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.

Однако для реализации данного метода нужно
будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих
распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру,
изменить длину поршневого хода посредством компьютерного вмешательства.

Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.

Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.

Курс на увеличение
степени сжатия двигателя наблюдался и в середине 20 века в
США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась
в пределах 11-13 единиц. Но работали они только на очень качественном,
высокооктановом топливе, получаемом путём этилирования. После того как
этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя
сжатия.

Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.

Дефорсирование ДВС: для чего нужно и как осуществить

Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.

Дефорсирование двигателя, как правило, процедура
вынужденная. В том числе это делается для снижения налоговых выплат или в целях
увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше
работают, меньше подвержены износу. Однако любой такой процесс усложняется
законом, чтобы недобросовестные владельцы искусственно не занижали технические
данные.

Дефорсифицированный двигатель

Что касается снижения показателя сжатия на
турбированных моторах, то здесь потребуется модернизация системы электрики с
датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.

В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.

Таблица: зависимость степени сжатия от октанового
числа

Степень сжатия Октановое число
5,5-7 АИ 66-72
7-7,5 АИ 72-76
7,5-8,5 АИ 76-85
10 АИ 92
10,5-12,5 АИ 95
12-14,5 АИ 98

Таблица: популярные двигатели и показатель сжатия

Двигатели Степень сжатия
BMW M54B30 10,2
 
Mercedes-Benz M112 E32 3.2 л
 10
 
Ford-Mazda 2,0 л Duratec HE/MZR LF
 10,8
 
Infiniti VQ37VHR (Nissan) 3.7 л
 11.0
 
Mitsubishi 4М41
 17.0
 
Audi 3.6 FSI
 12.0
ЗМЗ 406 2.3 л. 8-9,3

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Степень сжатия двигателя

Работа двигателей внутреннего сгорания характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.

Что такое степень сжатия

Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.

Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.

Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:

  • высокой;
  • низкой.

Расчет сжатия

Рассмотрим, как узнать степень сжатия двигателя.

Она вычисляется по формуле:

степ сж f1

Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.

Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:

степ сж f2

Здесь D – диаметр, а S – ход поршня.

Иллюстрация:

ход поршня

Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.

Альтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.

На что влияет степень сжатия

Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.

Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.

Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:

Сжатие Бензин
До 10 92
10.5-12 95
От 12 98

Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.

Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.

Изменение коэффициента сжатия

Зачем менять степень?

На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:

  • при желании форсировать двигатель;
  • если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
  • после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.

Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).

Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.

Форсирование двигателя

Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.

Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.

Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.

Возможные следующие методы, как увеличить степень сжатия двигателя:

  • установка тонкой прокладки ГБЦ и доработка головки блока;
  • расточка цилиндров.

Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.

Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.

Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.

Дефорсирование под низкооктановое топливо

Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.

Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.

Основной способ, как уменьшить степень сжатия двигателя — сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.

Некоторые интересные факты

Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.

Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.

В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.

Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.

Что такое степень сжатия

Степень сжатия является величиной, которая характерна для двигателей внутреннего сгорания. Степень сжатия двигателя является отношением полного объема цилиндра к объему камеры сгорания. Другими словами, это отношение объема пространства над поршнем во время его нахождения в НМТ (нижняя мертвая точка) к объему такого же пространства над поршнем при его нахождении в ВМТ (верхняя мертвая точка).

Стоит отметить, что понятие степени сжатия двигателя зачастую ошибочно принимается за показатель компрессии.  Компрессия представляет собой максимальный уровень давления в цилиндре, которое создается в результате движения поршня из НМТ в ВМТ. Показатель компрессии принято измерять в атмосферах, тогда как степень сжатия выражается математически в виде определенного отношения. В качестве примера можно указать степень сжатия 11:1.

На самом деле показатель степени сжатия условно является разницей давлений в камере сгорания между моментом подачи  топливно-воздушной смеси (или только дизтоплива для дизельных ДВС) в цилиндр и тем моментом, когда происходит воспламенение топливного заряда. Различные двигатели могут иметь разный параметр  степени сжатия, что зависит от типа мотора и его конструктивных особенностей.  Принято выделять низкую или высокую степень сжатия.

Содержание статьи

Увеличение степени сжатия: плюсы и минусы

Любой ДВС в основе имеет принцип воспламенения смеси воздуха и распыленного топлива в камере сгорания. Результатом сгорания смеси становится тепловое расширение газов, которые толкают поршень. Такая энергия толчка от поршня передается на коленчатый вал двигателя посредством работы КШМ, что означает преобразование сгорания топлива в полезную механическую работу.

Чем большим оказывается показатель степени сжатия двигателя, тем сильнее итоговое давление газов на поршень. Увеличение давления будет означать, что за один такт силовая установка способна выполнить больше механической работы. Если проще, то мощность и отдача от двигателей с большей степенью сжатия выше сравнительно с аналогами, которые имеют меньший показатель. Также необходимо добавить, что количество самого подаваемого топлива в моторах с большей степенью сжатия не увеличивается, при этом такой двигатель имеет больший КПД. Бензиновые двигатели могут демонстрировать показатель степени сжатия от 8 до 12. Что касается дизельных моторов и особенностей воспламенения смеси в таких агрегатах, степень сжатия дизеля выше и находится в рамках от 14 до 18 единиц.

При всех положительных аспектах сильно увеличить степень сжатия не представляется возможным, так как значительное уменьшение объема камеры сгорания приводит к детонации топлива. Детонация в результате увеличения степени сжатия свойственна бензиновым ДВС. Дизельный двигатель, в котором воздух подается и сжимается отдельно, также может детонировать после впрыска дизтоплива. Детонация в дизеле связана с неисправностями топливной аппаратуры, неправильно установленным моментом впрыска, закоксовкой и сильным нагаром в цилиндрах двигателя и т.п.

Большинство современных моторов легковых автомобилей имеют высокую степень сжатия, так как двигатель становится мощнее и экономичнее. Топливно-воздушная смесь в таких ДВС сгорает более полноценно и равномерно, позволяя улучшить ряд характеристик двигателя во всем диапазоне оборотов. Главной особенностью моторов с высокой степенью сжатия является повышенная требовательность к качеству топлива. Для таких силовых агрегатов обязательно использование дорогих марок бензина с высоким октановым числом и солярки с необходимым цетановым числом. Большинство современных бензиновых ДВС предполагают использование топлива с октановым числом не ниже АИ-95 или АИ-98.

Доработка двигателя: изменение степени сжатия

Среди распространенных решений для форсирования двигателя или езды на более дешевом бензине является самостоятельное изменение объема камеры сгорания. Далее мы рассмотрим, как увеличить или уменьшить степень сжатия своими руками.

Если вы планируете форсировать двигатель, тогда степень сжатия нужно увеличить. Следует помнить, что увеличение закономерно приводит к тому, что детонационный порог будет снижен. Слишком высокая степень сжатия для двигателя будет означать, что устранить детонацию при помощи высокооктанового бензина, настройки УОЗ и других манипуляций не получится.

Стоит добавить, что более ощутимый прирост мощности способен обеспечить такой двигатель, который изначально был рассчитан на меньшую степень сжатия. Другими словами, больше мощности после тюнинга выдаст агрегат, штатно имеющий показатель 9:1 и доработанный до 10:1 сравнительно с мотором, который в стоке имел 12:1 и был форсирован путем увеличения показателя степени сжатия до 13:1.

Для прибавки мощности существуют такие способы:

  • доработка ГБЦ и/или установка тонкой прокладки ГБЦ;
  • расточка цилиндров и общее увеличение объема ДВС;

Под тюнингом головки блока в этом случае стоит понимать фрезеровку нижней части, которая стыкуется с блоком цилиндров. ГБЦ таким образом укорачивается, что и приводит к уменьшению камеры сгорания двигателя, а также увеличению степени сжатия. Аналогичную задачу преследует и установка более тонкой прокладки ГБЦ.

Необходимо учитывать, что при таком тюнинге существует риск встречи клапанов с поршнем. Перед началом работ необходимы детальные расчеты. В ряде случаев требуется замена поршней на такие, которые имеют увеличенные выемки под клапан. Фазы газораспределения также сбиваются, что потребует их последующей настройки.

Что касается расточки блока цилиндров, данный способ также требует замены поршней. Результатом становится увеличение рабочего объема ДВС и более высокая степень сжатия, так как объем камеры сгорания по отношению к увеличенному объему цилиндра не меняется.

Дефорсирование ДВС

Вполне очевидно, что после понижения степени сжатия двигатель будет дефорсирован. Делается такая доработка в том случае, если мощность двигателя отодвигается на второй план. Уменьшение степени сжатия позволяет эксплуатировать мотор на низкооктановом бензине без риска появления детонации, что и обеспечивает определенную экономию на разнице стоимости горючего.

Необходимо добавить, что подобное решение зачастую применяется на старых карбюраторных автомобилях. Что касается инжекторных авто с электронным блоком управления, в этом случае данный способ доработки настоятельно не рекомендуется.

Для уменьшения степени сжатия двигателя нужно реализовать увеличение высоты прокладки под ГБЦ. Для этого используются две обычные прокладки, между которыми укладывается третья, изготовленная из алюминия. Результатом станет увеличение высоты ГБЦ и объема камеры сгорания, что позволит в итоге перейти на более дешевый бензин.

Читайте также

Что такое коэффициент сжатия в бензиновых и дизельных двигателях?

Что такое коэффициент сжатия?

Коэффициент сжатия

является одной из основных спецификаций двигателя внутреннего сгорания. Это отношение объема над поршнем, когда он находится в самом нижнем положении (BDC), к объему над поршнем, когда он находится в самом верхнем положении (ВМТ). Указывает, в какой степени топливовоздушная смесь сжимается в двигателе.

Combustion chamber and Compression Ratio simple diagram Рисунок 1 — Простая диаграмма камеры сгорания и коэффициента сжатия

Это отношение объема камеры сгорания от ее наибольшей мощности к ее наименьшей мощности.Это отношение между объединенным объемом цилиндра и камеры сгорания, когда поршень находится в BDC (нижняя мертвая точка), к объему только камеры сгорания, когда поршень находится в ВМТ (верхняя мертвая точка). Это соотношение является одной из основных спецификаций для всех двигателей внутреннего сгорания.

Рабочая:

Поскольку бензин очень летуч, коэффициент сжатия для бензиновых двигателей обычно ниже. Таким образом, оно варьируется от 10: 1 до 14: 1. Бензиновый двигатель сжимает воздух и топливо с соотношением от 10: 1 до 14: 1.Бензиновый двигатель смешивает бензин с воздухом и сжимает эту смесь в камере сгорания. Это лучшее смешивание воздуха и топлива друг с другом делает смесь гомогенной. Затем электрическая свеча зажигания зажигает сжатую воздушно-топливную смесь искрой. Это заставляет топливо гореть мгновенно и полностью.

Коэффициент сжатия Compression Ratio

В случае дизельных двигателей «коэффициент сжатия» варьируется от 18: 1 до 23: 1, что зависит от конструкции и конструкции двигателя. В бензиновых двигателях используется метод «Искровое зажигание».Однако в технологиях дизельных двигателей, таких как «прямой впрыск» и «прямой впрыск» и «прямой впрыск Common-Rail», используется метод « с воспламенением от сжатия » . Однако степень сжатия остается практически одинаковой как для бензинового двигателя, так и для дизельного двигателя, соответственно, независимо от мощности / рабочего объема двигателя.

Преимущества более высокого коэффициента сжатия:

Чем выше степень сжатия, тем лучше тепловая эффективность двигателя.Таким образом, двигатель может извлекать больше механической энергии из заданной массы топливовоздушной смеси. В этом контексте дизельные двигатели имеют улучшенную топливную эффективность для данного количества топлива, чем бензиновые двигатели того же размера.

Это означает, что вы сравниваете обычные бензиновые и дизельные двигатели с одинаковым объемом двигателя, скажем, 1,0 л. Тогда в реальном мире 1,0-литровый дизельный двигатель будет потреблять меньше топлива по сравнению с 1,0-литровым бензиновым двигателем. Другими словами, автомобиль с 1.Дизельный двигатель 0L даст больший пробег по сравнению с автомобилем с бензиновым двигателем 1,0 л при аналогичных условиях вождения.

Продолжить чтение: Каково соотношение воздух-топливо в бензиновых двигателях? >>

О CarBike Tech

CarBikeTech — технический блог в автомобильной сфере. Регулярно публикует специальные технические статьи по автомобильной технике.

Посмотреть все сообщения CarBike Tech

,Статические и динамические коэффициенты сжатия

— Какая связь между степенью сжатия и экономией топлива?

Как мы узнали на предыдущей странице, статическое сжатие двигателя измеряется, когда впускной клапан двигателя полностью закрыт. Однако в реальной работе этого почти никогда не происходит. Двигатель работает так быстро, что может потребоваться снова открыть впускной клапан, прежде чем поршень завершит полный ход вверх и вниз. Когда это происходит, часть давления внутри цилиндра выходит из-под контроля, что снижает эффективность.По сути, для воздуха больше места, поэтому двигатель теряет часть мощности от сгорания топлива и воздуха.

Динамические коэффициенты сжатия учитывают движение впускного клапана. Инженеры могут настроить двигатель так, чтобы впускной клапан закрывался раньше, что способствует повышению давления в цилиндре. Двигатель также можно настроить так, чтобы клапан закрывался позже, но это позволяет выпускать немного воздуха и снижает эффективность использования топлива двигателем.

Вычисление динамической степени сжатия на самом деле довольно сложно.Для этого вы используете длину хода и длину шатуна, чтобы определить положение поршня, когда клапан полностью закрыт. Поскольку это отношение находится, когда поршень находится в середине своего хода, оно всегда ниже, чем степень статического сжатия. Как и статическое сжатие, более высокая степень сжатия означает более эффективное использование топлива и лучшую экономию топлива.

Современные высокоэффективные двигатели многих современных автомобилей во многом обязаны своей экономией топлива высоким коэффициентам сжатия.Но у двигателя с высокой степенью сжатия тоже есть свои недостатки. Чтобы поддерживать его в форме наконечника, необходимо использовать высокооктановый газ, который стоит дороже обычного неэтилированного газа. Если пропустить газ премиум-класса, со временем у двигателя может развиться стук. Стук двигателя — это когда сгорание воздуха не происходит в оптимальное время хода поршня. Использование топлива с низким октановым числом в двигателе с высокой степенью сжатия может повысить вероятность его детонации, поэтому если вы приобретаете новый, экономичный автомобиль с высокой степенью сжатия, убедитесь, что вы используете тот тип газа, который рекомендован в руководстве для вашего владельца, чтобы получить большинство из этого.

Ищете дополнительную информацию о степени сжатия двигателя и экономии топлива? Просто перейдите по ссылкам ниже.

Статьи по теме

Источники

  • Тобольдт, Уильям К., Ларри Джонсон, В. Скотт Готье. «Goodheart-Willcox Automotive Encyclopedia. Goodheart-WilCox Company, 2006. Tinley Park, Illinois.
  • Vizard, David.» Технология сжатия коэффициента сжатия — Power Squeeze. «Популярный журнал Hot Rodding.Февраль 2009 г. (16 декабря 2011 г.) http://www.popularhotrodding.com/tech/0311_phr_compression_ratio_tech/index.html

,

Как снизить степень сжатия двигателя

«Уменьшить степень сжатия?»

Какая степень сжатия? Это количество воздуха, которое двигатель может сжать, готовый к взрывной фазе сгорания.

Например, степень сжатия 10: 1 просто означает, что 10 единиц воздуха будут сжаты в пространство всего 1 единицы.

Степень сжатия (CR) играет большую роль в том, насколько хорошо работает двигатель.

Проблема детонации (когда смесь топливного воздуха преждевременно воспламеняется) в значительной степени контролируется степенью сжатия.

Примечание: вы можете использовать топливо с более высоким октановым числом для уменьшения проблем, связанных с детонацией, другой вариант может заключаться в использовании впрыска воды, но реальным разработанным решением является просто снижение степени сжатия.

Как рассчитать коэффициенты сжатия двигателя.

Чтобы рассчитать степень сжатия, вы просто делите рабочий объем (который не изменится, если двигатель не расточен и / или коленвал не заменен одним из более длинных смещений) на объем камеры сгорания.

Коэффициент сжатия рассчитывается путем деления объема над поршнем, когда он находится в ВМТ, на объем над поршнем, когда он находится в BDC.

Если вы хотите использовать принудительную индукцию (например, добавить турбонагнетатель, нагнетатель или воздушный компрессор), вы обнаружите, что вы ограничены в величине усиления, которое вы можете добавить, с помощью ограничений, установленных степенью сжатия. ( * см. Примечание ниже)

Чем ниже степень сжатия, тем больше погрешность, с которой вам приходится играть, что значительно упрощает настройку.

Если у вас высокая степень сжатия, то нет ошибки для детонации, а детонация и стук — это реальные проблемы.

Современные двигатели, использующие турбонагнетатели и высокие степени сжатия (15 фунтов / кв. Дюйм или более при коэффициенте сжатия 10: 1), обычно разрабатываются вокруг системы прямого впрыска топлива, где топливо может добавляться непосредственно перед тем, как требуется воспламенение, так что риск преждевременного детонация снижена.

Это новшество появилось в мире дизельных двигателей с чрезвычайно высоким коэффициентом сжатия.)

Лучшие способы снижения степени сжатия двигателя.

При уменьшении степени сжатия имеет смысл укрепить внутренние детали двигателя.

Это имеет еще больший смысл, если вы используете принудительную индукцию для увеличения мощности вашего двигателя.

Следует иметь в виду удобную формулу: —
CR = (рабочий объем + объем камеры сгорания в ВМТ) / объем камеры сгорания в ВМТ

* Не думайте, что коэффициенты сжатия определяют максимальный импульс, который вы можете безопасно запустить.Это только малая часть уравнения.

Важнейшее значение имеет ваше заправка, топливовоздушная смесь и время зажигания — вот ключевые ингредиенты.

Более низкая степень сжатия даст вам больше погрешности для ошибок и в основном позволяет вам работать с более высоким ускорением, чем вы могли бы в противном случае.

Имеет смысл дать турборежиму хорошую работу по сжатию воздуха и просто оставить двигатель, чтобы сосредоточиться на последней фазе сгорания и взрыва.

Несколько замечаний при определении окончательной степени сжатия.Когда вы заменяете головку на вашем двигателе, ее, как правило, нужно снимать, и это увеличивает степень сжатия, поэтому ее необходимо учитывать при расчете.

Толщина новой прокладки также будет немного больше, чем при затягивании головки на нее, поэтому измерьте толщину прокладки по старой прокладке.

5 хороших способов уменьшить степень сжатия

  • Поршни низкого сжатия . Это, кажется, путь.Поршни намного короче обычных. Небольшой плюс в том, что они также часто легче, поэтому двигатель будет вращаться немного более свободно.

    Мы бы порекомендовали комбинировать поршни с низким сжатием с более коротким ходом, чтобы получить максимальную выгоду.

    Форма поршневой головки также будет зависеть от степени сжатия, возникающей в двигателе.

    Это потребует демонтажа двигателя, и пока двигатель находится в отрыве, вы также можете выполнить некоторые другие моды, перечисленные ниже.

  • Более короткие стержни и уменьшение хода . Более короткий ход будет иметь драматическое влияние на степень сжатия.
    Комбинируя этот метод с поршнями с низким сжатием, можно начать думать о работе при очень высоких давлениях наддува при добавлении турбины.
    Кривошип также будет иметь некоторое влияние на ход двигателя, и в идеале все кривошипы, поршневые коронки и шатуны должны быть согласованы.

  • Головная работа , снова увеличивает объем цилиндра, но эффективность во многом зависит от того, как расположены впускной и выпускной клапаны, а также от того, сколько места у вас есть для работы.

    Снятие головки относительно просто и не требует таких больших усилий, как другие способы снижения компрессии. Тем не менее, требуется большой навык, чтобы правильно выполнять работу на голове и достичь более низкой степени сжатия, которую вы ищете.

  • Более толстые прокладки головки . Этот вариант немного сложен, но мы должны упомянуть его, поскольку многие люди используют более толстые прокладки для достижения более низкой степени сжатия.

    Мы также видели людей, использующих 2 или более прокладок для достижения более низкой степени сжатия! Использование нескольких прокладок, безусловно, не рекомендуется и представляет собой серьезное слабое место в двигателе.

    Более толстая прокладка уменьшит степень сжатия на небольшую долю, вероятно, только на .1 или .2.

    Это, безусловно, самый простой метод снижения компрессии, но есть риск, что вы будете более склонны к поломке прокладки головки, и выигрыш в более низком сжатии минимален.

  • Декомпрессионные пластины по сути являются продолжением головки и могут быть очень эффективными для снижения степени сжатия.

    Сторона блока нуждается в обычном уплотнении прокладки, но сторона головки обычно требует только ненадлежащего высокотемпературного герметика (в случае алюминиевых декомпрессионных пластин).

    Пластины могут быть изготовлены из различных металлов, и мы предлагаем вам поговорить со специалистом о ваших вариантах здесь.

    Декомпрессионные пластины могут преждевременно выходить из строя в приложениях с высоким наддувом, где возникают высокие температуры.

    Многие считают это хорошей вещью, поскольку заменить декомпрессионную пластину гораздо проще, чем заменить поршни и головки.

В большинстве случаев тюнеры выбирают множество этих опций, основываясь на желаемой полосе крутящего момента и выходной мощности двигателя, который они собирают.

Чтобы обсудить все аспекты тюнинга двигателя и модификации автомобиля или получить дополнительную информацию о снижении степени сжатия ваших двигателей, пожалуйста, присоединяйтесь к нашим дружелюбным международным автомобильным форумам.

ПОЖАЛУЙСТА, ПОМОГИТЕ: ВАМ НУЖНЫ ВАШИ ПОЛНОМОЧИЯ, ЧТОБЫ ПОКРЫТЬ РАСХОДЫ НА ЭТОМ САЙТЕ И ДЕРЖАТЬ ЕГО РАБОТУ. Я не взимаю с вас за посещение этого веб-сайта, и это позволяет большинству читателей TorqueCars сэкономить долл. США за долл. В год — , но мы НЕ ПРИБЫЛИ и даже не покрываем наши расходы.Чтобы мы продолжали работать, ПОЖАЛУЙСТА, Пожертвуйте здесь

Эта статья была написана мной, основателем Waynne Smith TorqueCars, и я ценю ваши отзывы и предложения. Эта запись была
подал под Engine Mods, Тюнинг. Вы можете оставить отзыв ниже или присоединиться к нашему форуму, чтобы подробно обсудить эту статью и модификацию автомобиля с нашими членами.

Если вам понравилась эта страница , поделитесь ею с друзьями, оставьте ссылку на нее на своем любимом форуме или используйте параметры закладок, чтобы сохранить ее в своем профиле в социальных сетях.

Обратная связь

Пожалуйста, используйте наши форумы , если вы хотите задать вопрос по настройке , и обратите внимание, что мы не продаем запчасти или услуги, мы просто онлайн-журнал.


Помогите нам улучшить, оставьте предложение или совет

,

границ | Двигатели с воспламенением от сжатия — революционная технология, имеющая цивилизованные границы во всем мире от промышленной революции до XXI века

Введение и краткая история двигателей с воспламенением от сжатия

С тех пор, как Рудольф Дизель изобрел двигатель внутреннего сгорания, который в конечном итоге будет носить его имя, воспламенение от сжатия используется в качестве эффективного и действенного средства для запуска сгорания в двигателях. Дизель использовал растительные масла, чтобы изобрести свой новый двигатель, так как в то время не было нефтяной инфраструктуры для топлива.Высокая степень сжатия для создания давления и температуры, необходимых для самовоспламенения, была отличительной чертой двигателя с воспламенением от сжатия. Механизм прямого впрыска топлива в камеру сгорания также требовался. Со временем инфраструктура нефтяных дистиллятов стала доступной для таких видов топлива, как бензин (для поддержки двигателей с искровым зажиганием), керосин и мазут (для отопления домов) и, конечно, дизельное топливо (Heywood, 1988).

Преимущества использования воспламенения от сжатия и прямого впрыска топлива в камеру сгорания проявили себя в течение следующих нескольких десятилетий ее развития.Двигатель с воспламенением от сжатия по своей природе нуждается в высокой степени сжатия, чтобы создать необходимые условия для самовоспламенения. Высокая степень сжатия является одной из характеристик конструкции для повышения эффективности. Кроме того, воспламенение от сжатия не требует дросселирования для управления выходной мощностью двигателя. Непосредственный впрыск топлива в камеру сгорания обеспечивал высокое сопротивление детонации, что ограничивает степень сжатия и, в конечном итоге, эффективность двигателей с искровым зажиганием. Дополнительным преимуществом является то, что без какого-либо ограничения детонации двигатели с воспламенением от сжатия могут иметь значительное повышение давления на впуске за счет турбонаддува, что дополнительно повышает эффективность и удельную мощность.

Попутно были преодолены и преодолены многие технологические препятствия, такие как возможность изготовления поршней и головок цилиндров, способных надежно достигать высоких коэффициентов сжатия, необходимых для самовоспламенения дизеля, предварительных камер, которые могли бы использовать доступные форсунки относительно низкого давления. в камеру полного сгорания с высокой степенью сжатия, новую технологию впрыска топлива с топливом очень высокого давления, что устраняет необходимость в предварительных камерах и позволяет осуществлять непосредственный впрыск в камеру сгорания, и, наконец, электронные элементы управления и исполнительные механизмы, обеспечивающие гораздо более точное топливо, воздух и контроль выбросов для удовлетворения строгих требований регулирования выбросов.

Текущее состояние двигателей с воспламенением от сжатия

Двигатели с воспламенением от сжатия

используются в различных коммерческих и потребительских приложениях по всему миру, для питания таких устройств, как большие корабли, локомотивы, коммерческие грузовики, строительное и сельскохозяйственное оборудование, генераторы энергии и даже автомобили. Почти исключительно эти применения используют дизельное топливо для сжигания. Дизельный двигатель полагается на легкость самовоспламенения топлива, инженеры-химикаты называют цетановое число / индекс — эмпирически выведенный показатель, который описывает легкость самовоспламенения топлива.Биодизель также используется во многих областях, особенно в сельской местности и в развивающихся странах. Биодизели обычно изготавливают из растительных масел, которые были химически обработаны для удаления глицериновых продуктов, оставляя метиловый (или этиловый) эфир жирной кислоты (FAME). Биодизели пытаются имитировать свойства дизельного топлива и, хотя они могут использоваться в качестве заменителя чистого топлива, они обычно используются в качестве смешивающего агента с нефтяным дизельным топливом.

Существует два основных подхода к двигателю с воспламенением от сжатия — двухтактная и четырехтактная архитектура.Очень большие двигатели CI (в частности, судовые и локомотивные) имеют тенденцию быть двухтактными, главным образом потому, что частота вращения двигателя ограничена низкими оборотами в минуту (об / мин). Двухтактные двигатели CI должны иметь внешний источник подачи воздуха, такой как турбокомпрессор или нагнетатель (или в некоторых случаях их гибрид), поскольку воздух нагнетается в цилиндр через отверстия в гильзе цилиндра. На рисунке 1 показана эта конфигурация. Выхлоп выпускается либо через другой набор портов (версия с искровым зажиганием), либо через тарельчатые клапаны в головке цилиндров (см. Рисунок 1).Впускные отверстия для воздуха в гильзе цилиндра открываются, когда поршень опускается ниже их во время рабочего хода, позволяя сжатому холодному воздуху попасть в цилиндр. Когда поршень направляется к BDC в ходе рабочего хода, выпускные клапаны в головке цилиндров начинают открываться, и горячий выхлоп начинает выходить из цилиндра через верхние выпускные клапаны. Когда поршень продолжает двигаться в направлении BDC, впускные отверстия в гильзе цилиндра открываются, пропуская свежий воздух в цилиндр, который выталкивает последний из выхлопных газов через верхние выпускные клапаны.Этот процесс очистки продолжается до тех пор, пока выпускные клапаны не закроются (иногда около положения поршня в BDC). Впускные отверстия все еще открыты, поэтому свежий воздух поступает в цилиндр от воздуходувки, пока поршень не пройдет верхнюю часть впускных отверстий на гильзе, задерживая воздух в цилиндре. Затем этот воздух нагревается и находится под давлением до тех пор, пока поршень не окажется возле ВМТ. Топливная форсунка создает брызги высокого давления в горячий сжатый воздух, вызывая самовоспламенение и сгорание. Затем цикл начинается заново.

С другой стороны, четырехтактный двигатель с воспламенением от сжатия работает путем нагнетания воздуха из впускного коллектора в цилиндр во время такта впуска, от ВМТ до BDC (см. Рисунок 2), затем впускные клапаны закрываются и поршень затем движется обратно в направлении ВМТ при сжатии воздуха до повышенной температуры и давления. Инжектор распыляет топливо в камеру сгорания, происходит воспламенение, и поршень нагнетается вниз под высоким давлением из-за сгорания в так называемом рабочем такте.Наконец, выпускные клапаны открываются, и поршень возвращается в ВМТ и вытесняет продукты сгорания выхлопных газов в такте выпуска. Затем цикл повторяется отсюда.

Независимо от того, является ли двигатель двух- или четырехтактным, цель состоит в том, чтобы создать воздух под высоким давлением и высокой температурой вблизи конца компрессионной части цикла. Впрыскиваемое топливо затем подвергается воздействию воздуха высокого давления и высокой температуры и самовоспламеняется очень быстро. Задержка между впрыском топлива и самовоспламенением называется задержкой зажигания, которая обычно составляет несколько углов поворота коленчатого вала.Топливо продолжает впрыскиваться в виде струи, которая имеет зону реакции на периферии струи, и реакция контролируется диффузией воздуха в зону реакции в сочетании с диффузией топлива наружу в зону реакции. Этот процесс диффузии происходит за миллисекунды, тогда как фактические реакции происходят в микросекундном масштабе времени, поэтому механика диффузии жидкости контролирует скорость реакции.

Значительные исследовательские усилия были потрачены на изучение путей повышения эффективности, характеристик выбросов, надежности и выходной мощности двигателей CI.Производственные компании, университеты и исследовательские лаборатории предоставили свои знания, оборудование и технические средства для развития технологии двигателей CI. Некоторые из этих достижений включают прямой впрыск (DI) для устранения необходимости в предварительных камерах и уменьшения теплопередачи, оптическую диагностику для изучения образования загрязняющих веществ в цилиндрах, расширенные возможности компьютерного моделирования для прогнозирования и оптимизации производительности двигателя с ХИ, значительные усилия для понимания химии топлива и состав для адаптации работы двигателя CI к местным топливам.Поскольку инженеры и ученые продолжают применять свой опыт в фундаментальных исследованиях технологии двигателей CI, нет никаких сомнений в том, что будут достигнуты дополнительные успехи.

Чем двигатель CI отличается от двигателя SI?

Есть несколько причин, по которым двигатели CI так популярны в коммерческих и промышленных приложениях. Одной из важных причин является то, что присущий топливу КПД двигателей выше, чем у двигателей СИ. Характер воспламенения от сжатия обеспечивает несколько важных факторов, которые обеспечивают высокую топливную эффективность.Одним из факторов является высокая степень сжатия (Gill et al., 1954). Поскольку двигатели CI полагаются на топливо, впрыскиваемое в цилиндр, и на смешивание этого топлива с воздухом, детонация двигателя исключается. Детонация двигателя является одним из основных ограничений более высокой степени сжатия в двигателях СИ. Вторым фактором является устранение необходимости дросселирования двигателя для контроля выходной мощности. Опять же, поскольку топливо впрыскивается напрямую и смешивается в камере сгорания, мощность двигателя ХИ можно регулировать, просто регулируя количество впрыскиваемого топлива, в отличие от двигателей СИ, где топливо и воздух предварительно смешаны и по существу однородны при постоянной смеси. соотношение (Heisler, 1999).Это означает, что для поддержания постоянного соотношения смеси, если топливо уменьшается, воздух также должен быть уменьшен в той же пропорции. Такое управление воздухом осуществляется с помощью дросселя или ограничения на впуск, и оно создает значительные газообменные или «перекачивающие» потери. Третий фактор — это теплопередача. Двигатели CI способны работать на «обедненном топливе», что означает, что двигатель потребляет все топливо, но не весь кислород, присутствующий в камере сгорания. Это приводит к более низким температурам в цилиндрах и, как следствие, к более низкому отводу тепла к охлаждающей жидкости и выхлопным системам двигателя, а также к повышению эффективности.Дополнительным преимуществом является то, что гамма или коэффициент удельных теплотворной способности C p / C v выше для двигателей, работающих на обедненном топливе, чем для двигателей, работающих на стехиометрии. Меньше тепловой энергии, генерируемой реакциями сгорания, теряется в состояниях возбуждения более крупных трехатомных частиц (паров CO 2 и H 2 O). Это означает, что больше тепловой энергии доступно для повышения давления и температуры рабочего тела, что создает работу, которая может быть извлечена (Foster, 2013).

Тем не менее, есть несколько недостатков двигателя CI, о которых стоит упомянуть. Двигатель CI должен быть спроектирован так, чтобы он был очень прочным, чтобы выдерживать повышенные давления и температуры, возникающие из-за высоких степеней сжатия и повышенного давления на впуске. Это создает конструкции двигателей с высокой инерцией вращения и, следовательно, ограничивает максимальную частоту вращения двигателя. Это также повышает стоимость, так как все оборудование должно быть очень долговечным. Другим недостатком двигателей CI является сигнатура выбросов.Опора на диффузионно-контролируемое сгорание означает, что существует значительное расслоение между топливом и воздухом, в отличие от однородности смесей бензин / воздух в двигателях SI. Эта стратификация создает твердые частицы (PM) и оксиды азота (NO x ). Было обнаружено, что эти нежелательные продукты сгорания ХИ представляют опасность для здоровья и вредны для окружающей среды. По сути, традиционный двигатель CI не имеет проблемы эффективности, он имеет проблему выбросов.

А как насчет биотоплива?

Большая часть текущей и прогнозируемой работы в двигателях CI, по-видимому, сосредоточена на использовании альтернативных видов топлива или даже нескольких видов топлива в попытке сохранить высокую эффективность (возможно, даже повысить ее), но при этом значительно снизить сигнатуры вредных выбросов и производство парниковых газов. Биологическое топливо является одним из популярных подходов, особенно в развивающихся странах, для борьбы с проблемой парниковых газов и стоимостью импорта нефти.Биотопливо, как правило, производится из растительного масла определенного типа и подвергается химической обработке для создания продукта, который во многом имитирует нефтяное дизельное топливо. Таким образом использовалось несколько видов сырья, в зависимости от местных условий выращивания и культур, которые процветают в этих условиях. Масла из соевых бобов, рапса, пальмового масла, ятрофы и караньи и многих других были переработаны в качестве топлива. Как правило, биотопливо этого типа подразделяется на категории: масла, полученные из съедобных растений, и масла, полученные из непищевых растений.Химически топливо, получаемое из пищевых установок, легче и дешевле перерабатывать в топливо. Однако это также может создать проблему «пищи или топлива» в местной экономике. Непищевое растительное биотопливо сложнее и дороже в переработке, но, как правило, позволяет избежать трудностей, связанных с «пищей или топливом». Одна из проблем, стоящих перед традиционным биодизельным топливом, состоит в том, что само топливо содержит кислород как часть своей структуры. Это кислородсодержащее топливо будет иметь значительно более низкое содержание энергии по сравнению с нефтяным дизельным топливом.Снижение содержания энергии обычно составляет порядка 7–8% по объему по сравнению с нефтяным дизельным топливом. Это приводит к увеличению объема потребляемого топлива при том же количестве доставляемой энергии. Более поздняя работа была проделана в отношении водорослевого или водорослевого топлива, которое дает потенциал для гораздо большего выхода, чем традиционное биотопливо (Frashure et al., 2009). Другой недавней темой исследований является создание «возобновляемого» дизельного топлива из гидротермальной или другой обработки материала биомассы для извлечения углеводородов с длинной цепью, аналогичных нефтяному дизельному топливу (Aatola et al., 2008). Возобновляемое дизельное топливо не склонно к оксигенации, поэтому содержание энергии, как правило, такое же, как и для нефтяного дизельного топлива. Тем не менее, другой подход к созданию дизельного топлива как из возобновляемых, так и из невозобновляемых источников использует процесс, называемый Fischer-Tropsch (FT), так называемый в честь немецких изобретателей этого процесса в 1930-х годах. FT-топлива получают из метана, газифицированного угля или газифицированной биомассы для создания углеводородов с длинной цепью, пригодных для использования в качестве топлива. Несколько сокращений используются для этого вида топлива, в зависимости от исходного сырья.Газ-жидкость (GTL), уголь-жидкость (CTL) и биомасса-жидкость (BTL) — вот некоторые из этих сокращений. Процесс ФТ создает довольно качественное дизельное топливо — с высоким содержанием цетана, низкой вязкостью, без серы и высоким содержанием энергии — но процесс также сложен и дорог, по крайней мере, в настоящее время (Agarwal, 2004).

Что такое современный двигатель CI?

Двигатели

CI используются во всем мире в качестве источников движущей и стационарной мощности. По мере того, как развивающиеся экономики, такие как Индия и Китай, наращивают спрос на транспорт и электроэнергию для удовлетворения экономического спроса, возникают серьезные вопросы относительно будущего двигателей CI перед лицом все более строгих природоохранных норм, правил по парниковым газам и спроса на ископаемое топливо. ,Существуют ли стратегии, которые позволят двигателю CI развиваться в соответствии с настоящими и будущими требованиями рынка?

Используя традиционное дизельное топливо, инженеры добились впечатляющих успехов в повышении эффективности и сокращении выбросов, применяя передовые технологии впрыска, такие как насосы высокого давления Common Rail, пьезоэлектрические топливные инжекторы, передовые турбомашины и рекуперация отработанного тепла (термоэлектрика и т. Д.), и почти полное удаление серы в дизельном топливе. Теперь топливо можно более точно дозировать в камеру сгорания, чтобы создать более плавные и менее загрязняющие события сгорания.Использование рециркуляции выхлопных газов (EGR) позволило инженерам снизить концентрацию кислорода во входящем воздухе, обеспечивая более низкие пиковые температуры сгорания со значительным снижением NO x . Достижения в области последующей обработки, такие как дизельные сажевые фильтры (DPF), катализаторы deNO x (как селективное каталитическое восстановление, так и обедненная ловушка) и дизельные катализаторы окисления (DOC), в настоящее время используются в современных двигателях с ХИ.

Продолжающиеся передовые работы по сгоранию создали потрясающие возможности для повышения эффективности двигателя CI, а также значительного улучшения характеристик выбросов.В ходе исследований было показано, что возможно улучшение некоторого предварительного смешивания топлива и воздуха при сохранении способности контролировать выходную мощность путем подачи топлива (без дросселирования) и сохранять высокую степень сжатия. Есть множество стратегий, которые были использованы для достижения этих целей. Одним из них является использование двойного топлива, широко известного как воспламенение от сжатия с регулируемой реактивностью (RCCI). В RCCI топливо с низкой реакционной способностью (такое как бензин, этанол или подобное) впрыскивается в камеру сгорания в качестве основного источника энергии и очень небольшого количества топлива с высокой реакционной способностью (такого как дизельное топливо, биодизельное топливо и т. Д.).). Это не только дает возможность работать на обедненном двигателе, что снижает пиковые температуры сгорания и повышает эффективность, но также обеспечивает стратегию принудительного зажигания, позволяющую избежать пропусков зажигания и сохранить высокую прочность. RCCI в исследовательских двигателях продемонстрировал возможность достижения очень высоких уровней эффективности (в первую очередь благодаря еще большему снижению теплопередачи, чем при традиционном сгорании дизельного топлива) и надежности управления. Основным недостатком RCCI является требование наличия двух инжекторов на цилиндр (по одному на каждое топливо) и требование либо перевозить два отдельных топлива, либо нести добавку, повышающую реактивность, для топлива с низкой реакционной способностью (Curran et al., 2013).

Еще одна интересная возможность в мире двигателей CI — это использование топлива с довольно низкой реакционной способностью (бензин, нафта и т. Д.) По сравнению с дизельным топливом, но при этом все еще используется двигатель с воспламенением от сжатия и большая задержка зажигания этих топлив для обеспечения некоторый уровень предварительного смешивания при сохранении достаточного расслоения для обеспечения контроля нагрузки (Kalghatgi et al., 2007). Воспламенение от сжатия бензина (GCI) или воспламенение от сжатия с предварительным смешиванием (PPCI) пытаются достичь той же цели, что и RCCI, использующие двухтопливное топливо, но сделать это путем точного расслоения одного топлива.Это управление воспламенением может быть довольно сложным по сравнению с RCCI, поскольку оно зависит от постоянно меняющихся локальных характеристик смешивания топлива и воздуха, а не от положительного добавления топлива с высокой реакционной способностью в определенное время. Преимущество состоит в том, что требуется только одно топливо и один инжектор на цилиндр.

В каждом из случаев для RCCI и PPCI, цель состоит в том, чтобы обеспечить достаточное предварительное смешивание для того, чтобы уровни ТЧ были низкими, и чтобы обеспечить плавное горение или разбавление, достаточное для поддержания пиковых температур сгорания ниже 2000K, избегая теплового NO x производство.Надежность этих новых подходов к сгоранию и воспламенению является проблемой, к которой приближаются несколько исследовательских организаций по всему миру (Johansson et al., 2014; Sellnau et al., 2014).

Что ждет будущее для двигателей CI?

По крайней мере, с 2015 года двигатели CI занимают доминирующее положение на рынке коммерческих автомобилей и внедорожных транспортных средств. По мере того как во всем мире к нормативам по выбросам парниковых газов и качеству воздуха применяется все больше нормативного давления, двигатели CI будут продолжать развиваться, чтобы соответствовать этим требованиям.Сочетание высокой плотности энергии жидкого топлива в сочетании с высокой удельной мощностью двигателей CI и очень низкой стоимостью производства будет и впредь делать двигатели CI популярным решением для производства двигательной и стационарной энергии. В этой области продолжаются захватывающие исследования, направленные на повышение эффективности, сокращение выбросов, совершенствование технологии контроля за выбросами и последующей обработки, и достигнут огромный прогресс. Однако необходим еще больший прогресс, поскольку население мира превышает 7 миллиардов человек, а спрос на электроэнергию в развивающихся странах стремительно растет.То, как мы решим проблемы транспорта и энергетики в ближайшие несколько десятилетий, задаст тон нашей способности как общества поддерживать как среду обитания, так и уровень жизни, приемлемый для постоянно растущего населения во всем мире.

Заявление о конфликте интересов

Автор заявляет, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Представленная рукопись была создана UChicago Argonne, LLC, оператором Аргоннской национальной лаборатории («Argonne»).Аргонн, лаборатория Управления науки Министерства энергетики США, работает по контракту № DE-AC02-06Ch21357. Правительство США сохраняет для себя и других лиц, действующих от его имени, оплаченную неисключительную, безотзывную всемирную лицензию в указанной статье на воспроизведение, подготовку производных произведений, распространение копий для широкой публики, а также публичное исполнение и публичное показ от имени правительства. Это не влияет на права других лиц на повторную публикацию и распространение в соответствии с условиями CC-BY (www.creativecommons.org). Автор хотел бы отметить финансовую поддержку, которую оказывает Департамент энергетики Управления транспортных технологий, Программа усовершенствованного сгорания двигателя, которой руководит г-н Гурприт Сингх.

Отзывы

Aatola H., Larmi M., Sarjovaara T. и Mikkonen S. (2008). Растительное масло, обработанное гидроочисткой (HVO), в качестве возобновляемого дизельного топлива: компромисс между Nox, выбросами твердых частиц и расходом топлива двигателя большой мощности . Технический документ SAE 2008-01-2500.Уоррендейл, Пенсильвания: Общество инженеров автомобильной промышленности.

Google Scholar

Agarwal, A.K. (2004). Разработка и характеристика биодизеля из непищевых растительных масел индийского происхождения . SAE 2004-28-0079. Уоррендейл, Пенсильвания: Общество инженеров автомобильной промышленности.

Google Scholar

Curran S., Hanson R., Wagner R. и Reitz R. (2013). Картирование эффективности и выбросов RCCI в легком двигателе .Технический документ SAE 2013-01-0289. Уоррендейл, Пенсильвания: Общество инженеров автомобильной промышленности.

Google Scholar

Frashure, D., Kramlich, J. и Mescher, A. (2009). Технико-экономический анализ промышленной добычи водорослей . Технический документ SAE 2009-01-3235. Уоррендейл, Пенсильвания: Общество инженеров автомобильной промышленности.

Google Scholar

Гилл П., Смит Дж. И Зюрис Е. (1954). Основы двигателей внутреннего сгорания , 4-е изд.Аннаполис, доктор медицинских наук: Военно-морской институт США.

Google Scholar

Heisler, H. (1999). Техника для автомобилей и двигателей , 2-е изд. Уоррендейл, Пенсильвания: SAE International.

Google Scholar

Heywood, J. (1988). Основы двигателя внутреннего сгорания . Нью-Йорк, Нью-Йорк: McGraw-Hill Inc.

Google Scholar

Kalghatgi, G.T., Risberg, P. и Angström, H.E. (2007). Частично предварительно смешанное самовоспламенение бензина для достижения низкого уровня дыма и низкого NOx при высокой нагрузке в двигателе с воспламенением от сжатия и сравнение с дизельным топливом .Технический документ SAE 2007-01-0006. Уоррендейл, Пенсильвания: Общество инженеров автомобильной промышленности.

Google Scholar

Селлау М., Фостер М., Хойер К., Мур В., Синнамон Дж. И Хастед Х. (2014). Разработка бензинового двигателя с непосредственным впрыском (GDCI). SAE Int. J. Двигатели 7, 835–851. doi: 10.4271 / 2014-01-1300

CrossRef Полный текст | Google Scholar

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *