Датчики топливной системы: Датчик давления топлива в рампе: где находится, как проверить

Содержание

Датчик давления топлива в рампе: где находится, как проверить

Датчик давления топлива (далее — ДДТ) неотъемлемая часть системы топливоподачи для бензиновых и дизельных моторов. В зависимости от конструкции системы в авто может устанавливаться два регулятора, для магистрали низкого и высокого давления.

Исправность регулятора напрямую влияет на качество работы двигателя, неисправный узел снижает моторесурс ДВС на 15 %, ресурс топливного насоса на 50 %.

Датчик давления топлива

Принцип работы и конструкция

Регулятор давления топлива (далее — РДТ) монтируется на рампе, для дизельных моторов с подачей топлива по системе COMMON RAIL, бензиновых ДВС местоположения датчика различно. Единственным остается принцип подключения ― патрубок от насоса или монтаж на топливную рейку. Если система предполагает рециркуляцию топлива, характерную для бензиновых инжекторных двигателей, регулятор устанавливается на рампе. Если система не предполагает сброса топлива из рампы, датчик монтируют сразу после топливного насоса.

Конструктивно РДТ состоит из металлической мембраны, которая прогибается под давлением топлива и настроена на определенный диапазон работы и электрической регулирующей части. Электроузел представлен четырьмя тензорезисторами, которые меняют сопротивление элемента в процессе механического воздействия топлива на мембрану.

Регулятор давления топлива

На некоторых автомобиля присутствует два рдт, на магистралях и высокого и низкого давления. Перед тем, как проверить качество топливной смеси, проводится диагностика обеих деталей замером выходного напряжения. По электроимпульсу от датчиков регулировки ЭБУ формирует сигнал на открывание/закрывание топливного клапана.

схема системы

Бензиновые и дизельные ДВС имеют одинаковое выходное напряжение на ДДТ около 1.3 В, но различаются параметры давления топлива, которое поступает на форсунки.

Выходное напряжение датчика, ВДавление для дизеля, БарДавление бензина, Бар
1.345–5945–59
4.52200–2500200

Принцип работы

Признаки поломки датчика

Во всех авто после 2000 года выпуска РДТ интегрированы в блок управления двигателем и при любой неисправности на приборной доске загорится «Чек». Существуют старые дизельные моторы, которые комплектуются механическими регуляторами, диагностика элементов проводится планово или после появления сбоя в работе ДВС. Характерные симптомы неисправного датчика:

  • Кроме сигнала «Check Engine» выходят следующие коды ошибок: Р0190-Р0194.
  • Резкое снижение мощности ДВС, потеря тяги, часто определяется во время обгона, автомобиль не имеет мощности для динамичного ускорения даже до 120 км/ч.
  • Перерасход топлива.
  • Авто заводится плохо, независимо от того прогрет двигатель или нет.
  • Для дизельных ДВС характерно появление провалов на высоких оборотах, когда мотор не реагирует на сброс скорости.

Основная опасность передвижения с поломанным датчиком ― насос начинает работать в аварийном режиме, это приводит к его быстрому износу.

Если после диагностики сканированием обнаружена ошибка Р1181 ― разгерметизация топливной рампы, в первую очередь необходимо проверить регулятор, ошибка может свидетельствовать об износе установочной прокладки.

Причины поломки регулятора находятся в его конструктивных особенностях. Это износ или разрыв мембраны или нарушение электроконтактной группы. Отдельно стоит неисправность проводки. Во время диагностики датчика проверяется состояние клемм соединения, качество кабеля. ДДТ не ремонтируют, элемент меняют на новый, подбирая регулятор под конкретную марку авто и тип топлива.

Средний срок службы датчика от 5 лет. Характерной особенностью детали считается то, что неисправность возникает не за 1 день. Разрыв, растяжение мембраны происходит медленно, в 80 % случаев водители отмечают, что при минимальном износе регулятора практически не было заметно нарушений в работе ДВС. Исключение ― обрыв проводов колодки.

После установки датчика необходимо провести прописку элемента в ЭБУ, чаще это касается не оригинальной запчасти, а аналога.

где находится

Как проверить датчик давления топлива

В зависимости от того какая система топливоподачи используется для авто существует три способа проверки датчика на работоспособность без демонтажа топливной рейки:

  • механический способ для авто старого образца с резиновыми шлангами сброса топлива для бензиновых ДВС;
  • мультиметром;
  • манометром.

Демонтаж рейки и последующая диагностика регулятора более надежный способ проверить качество смеси, поскольку вместе с ДДТ проверяются все смежные узлы и проводка. Диагностику в большинстве вариантов проводят на СТО, поскольку потребуется использовать специальный стенд. Самостоятельная диагностика в гараже без демонтажа рейки требует наличия тестера и проводится за 15 минут.

Замена

Механическая диагностика регулятора старого образца

Для бензиновых ДВС в системе топливоотвода которых используется резиновый патрубок, датчик расположен на входе в насос. Проверка проводится только на непрогретом моторе.

  • Завести двигатель.
  • Запомнить характер его работы (неисправный датчик дает троение мотору).
  • Пережать плоскогубцами на 1–3 секунды патрубок отвода топлива.

Если неисправность находится в регуляторе, двигатель восстановит свою работу, обороты становятся плавными, пропадают рывки. Если после того, как закрыт отводной патрубок, мотор продолжает работать некорректно, неисправность может находиться в забитых фильтрах, изношенных контактах, датчик при этом исправен.

Диагностика мультиметром

С помощью тестера проверяют работоспособность РДТ и качество питания от колодки. Проверка электросигнала на колодку проводится по шагам.

  • Снять с датчика колодку.
  • Перевести мультиметр в режим измерения напряжения.
  • Установить черный вывод тестера на «минус», красный щуп присоединить к разъему колодки.

Если проход у электричества на датчик ничего не мешает, нет потери напряжения, на экране тестера высветится значение 5 В. Допустимое отклонение ±1 %.

Вторым этапом проверяется качество выходного сигнала от электрической части регулятора. Проверка сигнала от датчика по шагам.

Черный щуп от тестера присоединяется на минусовый вывод АКБ, красный щуп соединяется с сигнальный провод регулятора (чаще провод расположен в колодке посередине в красной оплетке).

Диагностика мультиметром

Завести мотор, дать поработать 1 минуту на минимальных оборотах холостого хода. В таком режиме оборотов выходное напряжение на ДДТ должно оставаться минимальным 1.3 В.

При увеличении оборотов параметр напряжения от датчика должен увеличиваться до 5 В. Если узел неисправен, на самых высоких оборотах показания могут значительно отличаться как в большую (в 10 % случаев) так и в меньшую сторону. Это приводит к тому, что насос начинает нагнетать топливо и переходит на аварийный режим работы.

Проверка манометром

Для проверки датчика на работоспособность используют манометр, прибор для измерения давления в рампе и патрубках топливной системы, давления воздуха в шинах и прочее. Перед проверкой манометром необходимо отсоединить с системы вакуумный шланг и подключить прибор между штуцером и топливным патрубком.

Перед диагностикой необходимо уточнить значение давления для конкретного автомобиля по мануалу. Рабочее давление для бензиновых моторов колеблется в пределах 2.5–3 Атм. В процессе перегазовки давление опускается на 1–2 % от нормы, исправный клапан удерживает значение в рамках допустимого.

Проверка манометром

Датчики дизельных систем COMMON RAIL типа BOSCH

Производительные системы прямого впрыска топлива COMMON RAIL от Бош получили большую популярность благодаря эффективности, снижению расхода топлива и надежности. Существует три разновидности систем топливоподачи, каждая из которых оснащается ТНВД определенного класса и уровня:

  • с регулировочным клапаном на рампе высокого давления;
  • регулировка топлива на патрубке высокого давления при выходе на ТНВД;
  • тип «двойной контроль», с двумя РДТ на магистралях высокого и низкого давления.

Точно определить, где находится регулятор, можно после изучения системы топливоподачи конкретного двигателя. Первичную диагностику рекомендуется проводить мультиметром. Оригинальные датчики Бош для COMMON RAIL имеют срок эксплуатации от 10 лет, выходят из строя в последнюю очередь, поэтому при любых нарушениях в режиме работы дизельного мотора диагностику начинают с проверки форсунок, ТНВД, качества дизеля.

Самостоятельно поменять РДТ можно за 15 минут в гараже, процедура достаточно простая. Но чтобы менять элемент необходимо полностью удостовериться, что некорректная работа ДВС связана с выходом из строя регулятора.

Видео по теме

Хорошая реклама

 

виды, принцип работы, как установить

Проблема увеличенного расхода топлива и связанных с этих затрат волнует не только владельцев личного автомобиля, но и владельцев автопарков. И если в первом случае увеличенное потребление связано с работой конкретного ДВС, то для автокомпаний проблема в другом — воровство горючего или слив.

Используя современные контактные и спутниковые системы мониторинга, операторы могут на расстоянии осуществлять контроль за расходом ГСМ. Одним из продуктивных механических контроллеров остаются датчики расхода топлива, которые устанавливаются на топливную магистраль и, в зависимости от конструкции, могут передавать информацию в режиме реального времени через систему спутниковой навигации.

Датчик расхода — какой бывает

Второе название — топливный расходомер, прибор  относится к проточному оборудованию, устанавливается на магистраль подачи топлива перед ДВС и отслеживает количество бензина или дизеля при работающем двигателе. Проточный датчик расхода топлива конструктивно представлен в трех вариантах:

  • однокамерный;
  • дифференциальный;
  • бесконтактный.

Простой однокамерный ДРТ контролирует единственный поток топлива, в конструкции не учитывается работа обратного клапана топливной магистрали, по которому неизрасходованное горючее возвращается в топливный бак.

однокамерный ДРТ

Дифференциальный или двухкамерный (двухпоточный) датчик отслеживает расход топлива, сопоставляя данные по двум потокам. В конструкции используется два расходомера. Пара калибруется относительно друг друга на заводе-изготовителе. На выходе формируется единый сигнал о фактическом потреблении.

Бесконтактный датчик является непроточным, топливо не проходит через корпус устройства. Используется на бензиновых моторах. Считывание информации происходит с форсунок перед формированием топливной смеси. На дизельных авто бесконтактное устройство используется достаточно редко, в основном на грузовых фургонах среднего класса.  Информация поступает на бортовой контроллер и передается через систему GPS-мониторинга.

Бесконтактный датчик

Принцип работы

Принцип работы как двухкамерного, так и однопоточного датчика одинаков. Цифровая плата, расположенная в корпусе устройства, формирует сигнал о количестве проходящего топлива. Информация передается напрямую бортовому контроллеру через выход интерфейса, где сохраняется или автоматически передается через КАН-шину оператору.

Монтаж ДРТ технически возможен не на все топливные системы. Для американских авто устанавливают только однопоточный расходомер, и отслеживают количество бензина без учета количества обратки. Это происходит потому, что устройство обратного клапана не сможет высчитать количество топлива в чистом виде, а считает пену или воздушно-пенную смесь, поэтому показания имеют большой процент погрешности — до 10 %.

Устройство ДРТ

Место установки

Расходомеры изготавливаются с учетом используемого топлива, класса авто. В паспорте на устройство всегда указывается, для каких двигателей предназначен тот или иной датчик, варианты подключения и настройки. Настройку расходомера проводят мастера сервисного центра, не рекомендуется устанавливать это средство измерения самостоятельно, поскольку потребуется врезка в топливную магистраль.

Не рекомендуется использовать схему подключения однопоточного ДРТ с вариантом «закольцовывания» обратки, когда неиспользованный бензин или дизель не возвращается в топливный бак, а поступает в топливную магистраль после датчика. Это приведет к тому, что при минус 5 топливо в баке не будет прогреваться (прогрев осуществляется за счет подачи горячего бензина или дизеля от мотора в бак), и будет большая вероятность заглохнуть на морозе.

Расходомер устанавливается на необходимом участке топливного шланга и дополнительно крепится через кронштейн к кузову. Некоторые модели расходомера не имеют кронштейна. Зажим топливного шланга на штуцерах прибора проходит через металлический хомут. Герметичность стыков обеспечивают внутренняя прокладка или сальник.

Место установки

Особенности для бензиновых и дизельных авто

Для дизельных и бензиновых моторов используются одинаковые ДРТ. Установка прибора на бензиновые ДВС считается нерентабельной, поскольку бензин быстро разъедает внутренний механизм контроллера и быстро его изнашивает. Альтернативой для бензинового ДВС может стать бесконтактный датчик или система контроля с КАН-шиной.

Проход дизеля через датчик, наоборот способствует смазке движущихся частей устройства, что повышает его срок эксплуатации. Снизить работоспособность может некачественная солярка с большим содержанием парафинов и присадок. Внутренние элементы конструкции засоряются, возникает некорректная передача сигнала. На дизельных топливных магистралях ДРТ систематически снимают и чистят.

Преимущества и недостатки

Учитывая, что минимальная стоимость расходомера с подключением и настройкой составляет 150 $, мало кто из владельцев личного автомобиля его купит. Эти средства измерения актуальны для таксопарков, компаний с большим объемом грузоперевозок и пр. Преимущества датчика:

  1. Надежность цифровых устройств. Датчики не меняют показаний при высоком/низком магнитном, электрическом поле, что делает невозможным самовольную перенастройку прибора.
  2. Точность отслеживания расхода. Максимальная погрешность — 3 %. Для сравнения, погрешность неотрегулированного датчика уровня топлива может достигать 15 %.
  3. Не зависит от конфигурации и объема топливного бака. Двухпоточный ДРТ позволяет контролировать объем обратки.

Главный недостаток проточного датчика — отсутствие контроля за количеством заправок и частотой слива топлива с бака. Устройство требует систематического обслуживания, не реже 1 раз в 30 дней и может устанавливаться не на все классы топливных систем.

Смстема с двухпоточным ДРТ

Альтернативные способы контроля расхода топлива

Для владельцев личных авто идеальным вариантом отслеживать расход топлива считаются правильная настройка датчика уровня топлива и корректное отображение величины на указателе расхода.

Вторым вариантом узнать настоящий расход остается использование штатного датчика через КАН-шину. Каждый метод имеет свои преимущества и недостатки.

Контроль расхода топлива через КАН-шину

CAN (Controller Area Network) — это интерфейс, который отслеживает все показания блоков, электронных систем и датчиков в авто, распределяет, передает, обрабатывает информацию для корректной работы узлов и агрегатов. Для отслеживания расхода горючего в КАН-интерфейсе используется штатный датчик уровня, установленный в баке.

Контроль расхода топлива через КАН-шину

Чтобы получить информацию с КАН-шины необходимо подключить систему мониторинга к CAN-интерфейсу. Лучшим вариантом считается бесконтактная передача данных, когда к шине подключаются бесконтактные считывали расхода. Для этого используется адаптер CAN-LOG, с помощью которого проводится передача информации с КАН-шины авто на систему мониторинга.

Бесконтактная схема не требует установки дополнительного оборудования в электросистему авто, не нарушает целостность проводки.

Датчик уровня топлива

Проверить расход бензина или дизеля можно используя штатный емкостный датчик уровня топлива. ДУТ может контролировать и передавать данные о динамическом потреблении горючего во время движения, количестве заправок и сливов с топливного бака.

Датчик уровня топлива

Подключается расходомер к устройству на панели приборов через аналоговый или цифровой разъем. На приборной доске располагается устройство, на шкале (цифровой или стрелочной) отображается реальный объем топлива.

Корректно настроенный датчик уровня имеет максимальную погрешность 3 %. Параметр зависит от правильной работы поплавка и от тарировки топливного бака. Чтобы получить максимально точную информацию, в бак устанавливают несколько приборов.

Датчики расхода топлива позволяют снизить затраты на ГСМ на 30 % за счет несанкционированных сливов. Приборы окупаются в течение 2–3 месяцев, что для владельцев автопарка достаточно выгодно. Устанавливать ли ДРТ на собственный автомобиль, каждый водитель будет решать сам. Правильно отрегулированный датчик уровня способен вывести на приборную панель всю необходимую информацию без использования дополнительного оборудования.

Видео по теме

Хорошая реклама

 

Система питания инжекторного двигателя: характеристика, устройство

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Инжекторный двигатель

Описание

За многолетнюю историю автомобилестроения появилось несколько типов впрыска топлива. И конструкции инжекторной системы бензинового двигателя различаются, причём существенно. Дизель достаточно схож в системе впрыска с инжектором.

Но есть огромные отличия в конструкции отдельных механизмов — степень сжатия в дизельном моторе во много раз выше. В целом же первые конструкции инжекторных систем очень сильно были похожи на дизельные.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

Инжекторный двигатель

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

Инжекторный двигатель

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Инжекторный двигатель

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Инжекторный двигатель

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Датчик уровня топлива: виды, принцип работы, устройство

Датчик уровня топлива (ДУТ) — функциональное устройство топливной системы автомобиля, единственным предназначением которого является определение уровня и объема горючего (дизтоплива, бензина, солярки, масла) в топливном баке.

Датчик располагается в баке для подачи топлива, а указатель топливного уровня выводится на приборной панели в салоне автомобиля. Подобные датчики контроля отличаются очень низкой погрешностью (не более 1%), их конструкция не имеет движущихся и быстро изнашиваемых элементов.

ДУТ также могут применяться в системах контроля заправок и слива топлива, а также в системах проведения спутникового мониторинга автомобилей.

Как устроен датчик уровня топлива

Современный датчик уровня топлива  — это не что иное, как датчик-потенциометр перемещения. Подобное устройство обладает рядом преимуществ, таких как: доступность, надежность и простота конструкции датчика; высокая точность проводимых измерений и низкая цена. Среди недостатков стоит выделить наличие отдельных элементов, восприимчивых к окислению и частым поломкам.

В топливной системе автомобиля могут использоваться датчики-потенциометры двух видов – трубчатые и рычажные. Основным элементом конструкции подобных датчиков является т.н. поплавок, для изготовления которого может использоваться тонколистовой металл, полая пластмасса и пенопласт.

Рычажный топливный датчик

В таком типе устройства поплавок соединяется с контактом датчика при помощи небольшого рычага, изготовленного из металла. Рычажный датчик представляет собой сектор, который разделен на полосы металла резистивного типа. Основой конструкции являются надежные износостойкие резисторы с толстой пленкой.

Подобный датчик может устанавливаться как отдельно, так и в блоке, который отвечает за подачу топлива. Блок может состоять из ТН и заборника топлива.

Благодаря своей исключительной универсальности рычажные датчики могут применяться практически на всех топливных баках.

Трубчатый топливный датчик

В данном типе датчика поплавок двигается внутри полой трубки. Параллельно установлены и провода, создающие сопротивление, на концах которых имеются контактные кольца для поплавка. Трубчатые датчики отличаются высоким уровнем устойчивости к различным колебаниям ТС.

ДВС, которые применяют новые виды топлива, оснащаются специальными бесконтактными ДУТ. Наиболее известным из таких датчиков является  магнитный датчик неактивный (MAPPS).

Основной элемент подобного устройства является закрытым, что полностью предотвращает его непосредственный контакт с горючей смесью. Поплавок в магнитном датчике соединяется с рычагом при помощи магнита (отсюда и название).

Передвижение магнита осуществляется исключительно по сектору, на котором устанавливаются металлические пластины, имеющие разную длину. Сформированное магнитное поле создает электрический сигнал на поверхности пластин, который определяет существующий уровень топливной смеси в баке.

Как работает датчик уровня топлива

Принцип действия ДУТ основан на следующем – для определенного значения уровня горючего в баке создается собственный сигнал на датчике.

Замеры уровня топлива поплавком осуществляются только при снижении уровня ТС в баке. При этом изначально указатель уровня показывает на заполнение бака, и только спустя некоторое время происходит плавное снижение указателя. В этот временной интервал датчики уровня могут допускать некоторую погрешность в измерении, которая зачастую не превышает 1%.

В большинстве топливных систем устанавливаются датчики уровня с цифровым и аналоговым сигналом. Датчик аналогового типа определяет степень изменения напряжения на потенциометре. Подобные датчики дают большую степень погрешности в измерениях в сравнении со своими цифровыми аналогами.

Датчик цифрового типа предназначен для преобразования аналогового сигнала в соответствующую цифру с дальнейшей корректировкой и выравниванием значения, с учетом возможных колебаний уровня ТС. Датчики данного типа отличаются высокой точностью, с допустимым уровнем погрешности в 0,5%.

Принцип работы топливного датчика

Доброго дня всем добрым людям. В статье можно узнать принцип работы топливного датчика. Типы устройств датчика и принцип его работы.

В системе автомобиля нет ни одной малозначимой детали. Все они отвечают за безопасность передвижения транспортного средства. Именно поэтому важно внимательно следить за техническим состоянием машины, по надобности приобретать лишь качественные автозапчасти.

Один из важнейших элементов, сигнализирующих автомобилисту о состоянии машины, — это датчик топлива. Датчик находится непосредственно в топливном баке и показывает уровень топлива. Датчик работает в системе с указателем уровня топлива, который размещен на панели приборов.

Типы устройств датчика топлива

1.Потенциометрический

Датчик, установленный на современных автомобилях, его преимущество состоит в довольно ожидаемых характеристиках: незатейливая конструкция, точные измерительные показатели расхода топлива, низкая стоимость.

Однако подвижные контакты, входящие в конструкцию, требуют пристального внимания к себе, поскольку подвержены износу и окислению, который устраняется простым ремонтом или заменой.

Потенциометрический датчики бывают двух типов — рычажные и трубчатые. Датчиком уровня топлива в их будет поплавок, находящийся на поверхности жидкости.

2.Бесконтактные

Например, неактивный магнитный датчик положения (MAPPS). Появление данной модели обусловлено популярностью новых видов топлива для двигателей внутреннего сгорания (этанол, биодизель, метанол).

В данном случае, контактный датчик будет неэффективен и может неправильно отображать данные, к тому же, особенности среды ускорят износ контактирующей поверхности.

Отличительной чертой такого датчика будет герметичная изоляция чувствительного элемента, хотя он все также выполнен в виде поплавка, соединенном с рычагом с помощью магнита, который перемещается по сектору. Уровень топлива определяется с помощью особого сигнала, генерируемого магнитным полем.

Принцип работы топливного датчика

Он достаточно прост — датчик реагирует на уровень топлива, и каждому объему соответствует определенный сигнал. Так сконструирован стандартный датчик. Современные модели более сложные и адаптированы к пространству кузова.

Стоить знать одну важную особенность всех баков. Уровни будут отображены только в том случае, когда топливо опустится ниже конкретной грани. То есть, пройдя нижнюю черту каждого уровня, станет видно количество топлива.

К тому же долгое время датчик будет показывать, что топливный бак полон, поскольку черта-индикатор еще не будет пройдена, а расход уже начнется. Поэтому стоит быть готовым к тому, что все датчики имеют определенную погрешность показателя. Так случается из-за колебания уровня топлива и особенностей геометрии бака.

Типы сигнала датчика

1.Аналоговый

Показывает изменение напряжения на потенциометре, и, к сожалению, они имеют более высокую погрешность измерения. Из-за этого от них все чаще отказываются производители автомобилей.

2.Цифровой

Более совершенный сигнал, который способен преобразовать аналоговый показатель, при этом выравнивая погрешность измерения, о которой было сказано ранее. На сегодня датчики с цифровым сигналом считаются наиболее точными, а погрешность наблюдается при начальном физическом измерении топлива.

Исправность данного элемента крайне важна, поскольку сбои в его работе могут повлечь за собой некорректное понимание работы автомобиля. В свою очередь это повлечет неисправности, которые могут потребовать серьезной диагностики и, возможно, дорогостоящего ремонта.

Поэтому важно следить за состоянием датчика, и при необходимости покупать качественную ему замену.

Это интересно

что такое ДУТ, устройство и принцип работы

Как известно, любой автомобиль, даже простейший карбюраторный или дизель с механическим впрыском, в обязательном порядке оснащен несколькими основными датчиками. К таким датчикам можно отнести датчик давления масла, датчик температуры двигателя, датчик, показывающий уровень бензина или солярки в топливном баке и т.д.

Авто с электронным впрыском (инжекторный двигатель) кроме основных, также имеют целый ряд дополнительных датчиков (в зависимости от модели, года выпуска и т.д.). При этом датчик уровня топлива (сокращенно ДУТ) в топливной системе автомобиля является обязательным. Далее мы рассмотрим,  что такое датчики уровня топлива, как работает датчик бензобака, а также где стоит датчик уровня топлива в баке автомобиля.

Содержание статьи

Датчики топлива в топливном баке: устройство и принцип работы

ДУТ — это датчик в топливной системе автомобиля, который определяет уровень топлива в топливном баке. При этом указатель уровня топлива, при всей своей кажущейся простоте, является важным элементом в устройстве любого автомобиля.

Указанный датчик позволяет не просто определить уровень топлива в баке. Благодаря взаимодействию датчика и нанесенной шкале на панели приборов (указатель топлива) становится понятно, сколько топлива осталось в баке в литрах.

В свою очередь, это позволяет эксплуатировать автомобиль с опорой на данные показания, приблизительно определить расход горючего, необходимость заправки машины топливом. Также при помощи данного указателя удается распланировать поездку из расчета на то, сколько горючего имеется в баке и т.д.

  • Разобравшись с тем, для чего нужен сам датчик, давайте подробнее рассмотрим, что такое ДУТ. Прежде всего, для определения уровня топлива, этот датчик ставится прямо в топливном баке. В свою очередь, сигналы посылаются от ДУТ к указателю уровня топлива, который размещен на панели приборов. Совокупность данных решений позволяет водителю четко понимать, сколько горючего осталось в баке,  постоянно контролировать расход топлива и т.д.

  Виды ДУТ и общее устройство датчика уровня топлива

Если не рассматривать старые авто, на более современных машинах датчик уровня топлива является потенциометрическим датчиком перемещения. Среди его основных плюсов можно выделить простое устройство, точность данных, а также высокую надежность и небольшую стоимость самого устройства.

Что касается недостатков, датчик имеет группу подвижных контактов, которые в процессе эксплуатации имеют свойство изнашиваться. Также часто указанные контакты окисляются. Это приводит к тому, что в результате окисления или полностью не работает датчик топлива, или же работает, но со сбоями (данные не верны).

Идем далее. В топливной системе могут быть использованы потенциометрические датчики:

  • рычажного типа;
  • трубчатого типа;

Чувствительный элемент в такой конструкции (как у рычажного, так и трубчатого датчика) выполнен в виде поплавка. Указанный поплавок датчика уровня топлива может быть пенопластовым, металлическим или пластиковым. Сам поплавок размещается на поверхности, то есть плавает в горючем.

  • В датчиках рычажного типа поплавок соединяется стальным рычагом с подвижным контактом потенциометра. В свою очередь, потенциометр — устройство, которое создает сопротивление при прохождении электрического тока.

При этом потенциометр разделен на отдельные участки-сектора в виде полос. Указанные полосы выполнены из особого резистивного материала, причем для каждого сектора он разный. В основе потенциометра лежит толстопленочный резистор.

Рычажный датчик уровня топлива стоит в блоке подачи топлива. Если просто, датчик зачастую установлен на самом бензонасосе. Реже решение может быть отдельным. Также можно отметить, что благодаря простой конструкции датчик уровня топлива данного типа вполне можно считать универсальным решением. Это значит, что его можно ставить в любые бензобаки.

Трубчатый датчик уровня топлива предполагает в конструкции особую трубку, в которой (благодаря наличию направляющих)  поплавок получает возможность перемещаться. При этом провода сопротивлений располагаются параллельно, на них замкнуты контактные кольца на поплавке.

Плюсом трубчатого ДУТ является то, что уровень топлива показывается более точно. Этот датчик устойчив к колебаниям горючего в баке, которые возникают при изменении положения кузова авто. Однако такой датчик нельзя ставить во все без исключения топливные баки, так как есть зависимость от геометрических параметров бака.

Еще добавим, что после активного перевода ДВС на альтернативные виды топлива (использование этанола, метанола, биодизеля) использовать контактные датчики для измерения уровня топлива нельзя. Дело в том, что датчик (его контактные поверхности) быстро изнашиваются в такой среде, которая является весьма агрессивной.

По этой причине в данном случае используют бесконтактные датчики уровня топлива. В качестве примера, MAPPS. Такое решение хорошо подходит для агрессивных сред, так как это неактивный магнитный датчик положения.

При этом чувствительный элемент полностью закрыт в герметичный корпус, нет прямого контакта датчика уровня топлива в баке с самим горючим. Замер уровня происходит за счет рассмотренного выше поплавка, который присоединен к рычагу с постоянным магнитом.

Указанный магнит осуществляет перемещения по сектору, где в виде лучей крепится большое количество пластин из металла. Наличие магнитного поля позволяет на каждой пластине сформировать отдельный электрический сигнал, причем на каждой пластине такой сигнал разный. Далее сигнал считывается с датчика уровня топлива, что и соответствует тому или иному уровню горючего в баке.

Датчик топлива: принцип работы

Итак, рассмотрев, как работает контактный и бесконтактный датчик бензина, дизтоплива или других типов горючего, можно перейти к его работе. В основе лежит принцип, что для каждого отдельного значения уровня топлива в баке должен быть сформирован отдельный сигнал. Казалось бы, все просто, однако это не так.

С учетом того, что на современных авто топливные баки могут быть достаточно сложными по форме и геометрии, а также сам уровень топлива постоянно меняется, причем не линейно, работа ДУТ имеет некоторые особенности.

Прежде всего, с учетом конструкции датчика уровня топлива, топливо сначала должно опускаться, только после чего начнет опускаться и сам поплавок. При этом указатель уровня топлива сначала определенное время будет показывать завышенный уровень, после чего произойдет понижение. Вполне очевидно, что датчик уровня горючего неизбежно имеет небольшую погрешность.

Также датчики могут формировать разный выходной сигнал. Бывают датчики уровня топлива с аналоговым, а также цифровым сигналом. Аналоговый сигнал ДУТ является меняющимся напряжением на потенциометре. Такие датчики отличаются большой погрешностью, что и свело к минимуму их использование.

Рекомендуем также прочитать статью о том, какие датчики используются в устройстве АКПП. Из этой статьи вы узнаете о датчиках АКПП, для чего предназначены и как работают те или иные датчики коробки автомат, а также какие признаки указывают на возможные неисправности датчиков автоматической коробки передач.

Цифровой датчик более сложный, так как сначала аналоговый сигнал преобразуется в цифровой, далее контроллер учитывает погрешность измерений и вносит поправку. В результате погрешность измерений минимальна, так как цифровой датчик отдельно учитывает возможные колебания уровня топлива, форму бака и т.д.

Именно по этой причине на авто сегодня ставят цифровые датчики уровня топлива, так как они имеют высокую точность и в любой момент показывают практически полностью достоверные данные (погрешность в цифровом датчике измерения уровня топлива минимальна).

Что в итоге

Как видно, ДУТ или датчик уровня топлива в баке является  достаточно простым, однако важным элементом в устройстве системы топливоподачи.  Причина вполне очевидна, так как при эксплуатации автомобиля важно всегда точно знать, сколько горючего находится в баке.

При этом следует учитывать, что как и любое другое устройство, указанный датчик может выходить из строя или работать со сбоями. По этой причине, если показания датчика уровня топлива явно отличаются от реальных, такой датчик подлежит проверке и замене.

Рекомендуем также прочитать статью о том, какие признаки неисправности имеет датчик коленвала. Из этой статьи вы узнаете об устройстве, назначении и принципах работы датчика коленчатого вала, а также какие признаки указывают на проблемы с ДПКВ или сбои в его работе.

В противном случае автомобиль может остаться без топлива в самый неподходящий момент, а также критическое снижение горючего в бензобаке может привести к скорому выходу из строя бензонасоса, засорению топливных фильтров и элементов системы топливоподачи осевшей грязью и частицами со дна бака и т.д.

Читайте также

  • Что такое датчик Холла?

    Устройство датчика положения (датчик на основе эффекта Холла). Конструктивные особенности, назначение и принцип работы. Как самому проверить датчик на авто.

Как работает система впрыска топлива?

Как работает система впрыска топлива?

 

C годами, системы подачи топлива, которые используются в современных автомобилях, претерпели значительные изменения для того, чтобы соответствовать стандартам топливной и эмиссионной эффективности. Subaru Justy 1990 г. была последним автомобилем с карбюратором, проданным на территории США, все последующие модельные ряды Justy имели систему впрыска топлива. Однако системы впрыска топлива существовали с 1950-х, а системы электронного впрыска топлива широко использовались в европейских автомобилях с 1980-х. Сейчас все автомобили, продающиеся в США, имеют системы впрыска топлива.

 

В этой статье мы узнаем о том, как топливо попадает в цилиндр двигателя, а также, что означают такие термины, как «впрыск топлива во впускной тракт» и «впрыск топлива в корпусе дроссельных заслонок».

 
Отказ от карбюраторов

 

В течение долгого времени, карбюратор был устройством подачи топлива в двигатели внутреннего сгорания. Он до сих пор используется в таких устройствах, как газонокосилки и бензопилы. Однако с развитием автомобилей, конструкция карбюраторов становилась все сложнее в попытке соответствовать всем техническим требованиям. Например, для того, чтобы справиться с некоторыми задачами, карбюраторы имели пять различных узлов:

 

Главная дозирующая система — Обеспечивает подачу топлива, достаточного при движении автомобиля со средними скоростями

Система холостого хода — Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах

Ускорительный насос — Обеспечивает впрыск дополнительного топлива при нажатии на педаль газа для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля

Система обогащения смеси — Обеспечивает подачу дополнительного топлива при движении автомобиля в гору или использовании прицепа

Воздушная заслонка — Обеспечивает подачу дополнительного топлива для запуска холодного двигателя

 

Для соответствия ужесточающимся требованиям к качеству выхлопных газов, стали применять каталитический конвертер. Для эффективной работы каталитического конвертера необходим тщательный контроль состава топливно-воздушной смеси. Кислородные датчики отслеживают количество кислорода в выхлопе, и блок управления двигателем (ECU) использует данную информацию для корректировки состава топливно-воздушной смеси в реальном времени. Это называется регулирование с обратной связью — данный метод невозможно было применять при использовании карбюраторов. Время карбюраторов с электронным управлением было недолгим, после чего стали использоваться системы впрыска топлива, однако устройство электронных карбюраторов было намного сложнее механических.

 

Вначале, карбюраторы заменили на систему впрыска топлива в корпусе дроссельных заслонок (также известная как система одноточечного или центрального впрыска топлива), которая объединяла в себе клапаны инжектора с электрическим управлением и дроссельную заслонку. Такие системы стали простым решением для замены карбюраторов, при этом производителям автомобилей не пришлось значительно изменять конструкции двигателей.

 

Постепенно, с разработкой новых двигателей, система впрыска топлива в корпусе дроссельных заслонок была заменена на систему впрыска топлива во впускной тракт (также известную как точечный, многоточечный или последовательный  впрыск топлива). В этих системах для каждого цилиндра установлен свой инжектор, обычно расположенный таким образом, чтобы впрыск происходил непосредственно во впускной клапан. Такие системы обеспечивают более точный замер расхода топлива и являются более чувствительными.

 
Когда Вы нажимаете на педаль газа

 

Педаль газа Вашего автомобиля соединяется с дроссельной заслонкой — клапаном, который регулирует количество воздуха, поступающего в двигатель. Таким образом, педаль газа — это педаль подачи воздуха.

Когда Вы нажимаете на педаль газа, дроссельная заслонка открывается больше, подавая больше воздуха. Блок управления двигателем (ECU, компьютер, контролирующий все электронные компоненты двигателя) «видит», что дроссельная заслонка открылась, и увеличивает подачу топлива в связи с увеличением подачи воздуха. Необходимо увеличивать подачу топлива при открытии дроссельной заслонки; в противном случае, при нажатии на педаль газа может произойти задержка, т.к. воздух поступает в цилиндры без топлива.

 

Датчики отслеживают массу воздуха, поступающую в двигатель, а также количество кислорода в выхлопе. Блок управления двигателем использует данную информацию для точной регулировки подачи топлива, чтобы обеспечить необходимый состав топливно-воздушной смеси.

 
Инжектор

 

При подаче питания на инжектор, электромагнит перемещает плунжер, который открывает клапан, который распыляет топливо под давлением через небольшую форсунку. Форсунка предназначена для распыления топлива — чем мельче распыление, тем легче сгорает топливо.

 

Срабатывание инжектора

 

Количество топлива, подаваемого на двигатель, определяется временем, в течение которого форсунка остается открытой. Это называется длительность импульса и контролируется блоком управления двигателем.

Инжекторы устанавливаются на впускном коллекторе для распыления топлива непосредственно во впускные клапаны. Труба, которая называется топливная рампа, осуществляет подачу топлива на все инжекторы.

Для обеспечения подачи необходимого количества топлива, блок управления двигателем оснащен множеством датчиков. Давайте рассмотрим некоторые из них.

Датчики двигателя

 

Для обеспечения подачи необходимого количества топлива для всех условий езды, блок управления двигателем (ECU) оснащен множеством датчиков. Ниже представлены некоторые из них:

 

·        Датчик массового расхода воздуха — Передает на блок управления двигателем массу воздуха, поступающего в двигатель

·        Датчик(и) кислорода — Отслеживает количество кислорода в выхлопе для того, чтобы блок управления определил, насколько богатой или бедной является топливная смесь, и произвел необходимые корректировки

·        Датчик положения дроссельной заслонки — Отслеживает положение дроссельной заслонки (которое определяет количество воздуха, поступающего в двигатель) для того, чтобы блок управления произвел корректировку, понижая или повышая количество поступающего топлива

·        Датчик температуры охлаждающей жидкости — Позволяет блоку управления определить, что двигатель разогрелся до нужной рабочей температуры

·        Датчик напряжения — Отслеживает напряжение бортовой сети для того, чтобы блок управления мог увеличить скорость холостого хода при падении напряжения (что является показателем высокой электрической нагрузки)

·        Коллекторный датчик абсолютного давления — Отслеживает давления воздуха во впускном коллекторе

·        Количество поступающего в двигатель воздуха является хорошим показателем производимой мощности; чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе, эти данные используются для определения производимой мощности.

·        Датчик скорости вращения коленчатого вала — Отслеживает число оборотов двигателя, что является одним из показателей для расчета длительности импульса

 

Существует два основных типа контроля многоточечных систем: Все инжекторы могут срабатывать одновременно, либо каждый срабатывает отдельно перед открытием соответствующего впускного клапана цилиндра (такой тип называется последовательный многоточечный впрыск топлива).

 

Преимущество последовательного впрыска топлива заключается в том, что если при езде происходят резкие изменения, то система более быстро реагирует на них, т.к. для изменения необходимо дождаться лишь пока не откроется следующий впускной клапан, вместо того, чтобы дожидаться начала следующего оборота двигателя.

Управление двигателем и Модули увеличения мощности

 

Алгоритмы, контролирующие двигатель, являются довольно сложными. Программное обеспечение должно позволять автомобилю соответствовать требованиям по выхлопу на каждые 100.000 км, требованиям Управления по охране окружающей среды, а также препятствовать раннему износу двигателя. Помимо этого, существует множество требований, которым необходимо соответствовать.

 

Блок управления двигателем использует формулу и большое количество поисковых таблиц для определения длительности импульса для заданных условий работы. Формула представляет собой ряд показателей, умноженных друг на друга. Большая часть показателей берется из поисковых таблиц. Давайте рассмотрим упрощенную формулу вычисления длительности импульса инжектора. В данном примере уравнение будет содержать всего три показателя, в то время как система управления может использовать несколько сотен или даже больше.

 
Длительность импульса = (Начальная длительность импульса) х (Показатель А) х (Показатель В)

 

Для вычисления длительности импульса, блок управления двигателем в первую очередь определяет длительность опорного импульса в поисковой таблице. Начальная длительность импульса представляет собой функцию частоты вращения двигателя (об/мин) и нагрузки (которая вычисляется по абсолютному давлению во впускном коллекторе). Допустим, что частота вращения двигателя составляет 2.000 об/мин при нагрузке 4. Нужное значение мы найдем на пересечении 2.000 и 4, что составляет 8 мс.

 об/минНагрузка
12345
1.00012345
2.000246810
3.0003691215
4.00048121620

 

В следующих примерах, A и B являются показателями, которые поступают с датчиков. Предположим, что A — это температура охлаждающей жидкости, а B — это уровень кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода равен 3, то, исходя из данных таблицы, мы получаем, что Показатель А = 0,8, а Показатель В = 1,0.

 AПоказатель А
BПоказатель B

01,2

01,0

251,1

11,0

501,0

21,0

750,9

31,0

1000,8

40,75

 

Итак, теперь мы знаем, что начальная длительность импульса является функцией нагрузки и частоты вращения, и что длительность импульса = (начальная длительность импульса) x (Показатель A) x (Показатель B), общая длительность импульса в нашем примере равна:

 
8 x 0,8 x 1,0 = 6,4 мс

 

Исходя из этого примера, Вы теперь понимаете, как система управления совершает корректировки. Если показатель В — это уровень кислорода в выхлопе, в таблице указано, что значение показателя В соответствует (согласно данным конструкторов двигателя) повешенному содержанию кислорода в выхлопе; при этом блок управления двигателем сокращает подачу топлива.

 

Настоящие системы управления используют более 100 показателей, для каждого из которых имеется соответствующая таблица. Некоторые показатели меняются со временем с учетом поправки на изменения эффективности работы некоторых компонентов двигателя, например, каталитического конвертера. И, в зависимости от частоты вращения двигателя, блок управления двигателем выполняет данные вычисления более 100 раз в секунду.

 
Модули увеличения мощности

 

Далее логично будет перейти к модулям увеличения мощности. Теперь, когда мы немного разобрались в том, как работают алгоритмы управления, мы можем понять, что же делают производители модулей увеличения мощности для повышения мощности двигателя.

 

Модули увеличения мощности изготавливаются компаниями, работающими на послегарантийном рынке, и используются для повышения мощности двигателя. В блоке управления двигателем находится модуль, в котором хранятся все поисковые таблицы; модуль увеличения мощности заменяет его. Таблицы в модуле увеличения мощности содержат данные, которые позволяют увеличить подачу топлива в определенных условиях езды. Например, может подаваться больше топлива при полном дросселе на любых оборотах двигателя. Также может быть изменена установка момента зажигания (для этого также существуют таблицы). В связи с тем, что производители модулей увеличения мощности, в отличие от производителей автомобилей, не связаны такими обязательствами, как надежность, пробег и контроль выхлопа, они могут использовать более высокие значения в поисковых таблицах.

 

Для получения большей информации по системам впрыска топлива, рекомендуем ознакомиться с ссылками на следующей странице.

Источник:  https://auto.howstuffworks.com/fuel-injection6.htm

 

 

Датчики расхода и уровня топлива — документация коптера

В версиях прошивки 4.0 и более поздних версиях ArduPilot предоставляет возможность использовать датчики расхода и уровня топлива в дополнение к мониторам батареи. Поддерживаются датчики расхода топлива с импульсным выходом и датчики уровня топлива с ШИМ-выходом. Подобно аналоговому монитору аккумуляторной батареи, обеспечивающему измерение текущего расхода, при этом состояние емкости вычисляется автопилотом, эти датчики обеспечивают измерения расхода топлива или уровня, чтобы обеспечить такую ​​же отчетность и мониторинг для систем жидкого топлива.

Датчики расхода топлива

Датчики расхода топлива, которые выдают импульс для каждой единицы израсходованного топлива, такие как этот, показанный ниже, могут использоваться так же, как батарея в ArduPilot, с мониторингом, отображением, отказоустойчивостью и т. Д.

Изображение предоставлено BIO-TECH

Отображения / журналы / ограничения для потребленных ампер и мАч теперь фактически представляют собой потребленные литры / час и миллилитры. Напряжение всегда будет отображаться как 1,0 В

Подключение к автопилоту

Любой вывод на автопилоте с поддержкой GPIO можно использовать для подключения к выходу датчика.Если это выход с открытым коллектором, потребуется подтягивание внешнего резистора 10 кОм до 3,3 В. Для контроллеров стиля Pixhawk можно использовать любой вывод AUX, а для большинства других автопилотов можно использовать верхний выход PWM.
В любом случае его необходимо освободить от использования в качестве выхода ШИМ, установив BRD_PWM_COUNT ниже, чем общее количество выходов, доступных для использования ШИМ.

Например, если плата обычно обеспечивает 6 выходов, установка BRD_PWM_COUNT на 5 сделает выход 6 ШИМ доступным для использования в качестве GPIO.Номер контакта, назначенный этому выходу при использовании в качестве GPIO, необходимо определить из его файла hwdef.dat, расположенного здесь, как показано ниже, где PWM6 назначается как контакт 55 GPIO при использовании как таковой:

Датчики уровня топлива

Поддерживаются датчики

уровня топлива, которые выводят значения ШИМ, пропорциональные уровню топлива, оставшемуся в баке, например, датчик, поставляемый Foxtech, показанный ниже.

Отображаемые / журналы / ограничения для потребленных мАч теперь фактически представляют собой потребленные миллилитры с входным сигналом ШИМ 1100 мкс, указывающим пустой, и ШИМ 1900 мкс, указывающим полный.Напряжение всегда будет 1,0 В. Текущий не определен.

Подключение к автопилоту

Опять же, как и выше, любой вывод, поддерживающий GPIO, может использоваться как вход ШИМ от датчика.

,

Датчики двигателя — Как работают системы впрыска топлива

Чтобы обеспечить правильное количество топлива для каждого рабочего состояния, блок управления двигателем (ЭБУ) должен контролировать огромное количество входных датчиков. Здесь только несколько:

  • Датчик массового расхода воздуха — Сообщает блоку управления двигателем массу воздуха, поступающего в двигатель
  • Датчик (и) кислорода — Контролирует количество кислорода в выхлопе, чтобы ЭБУ мог определить, насколько богатая или бедная топливная смесь, и внести соответствующие корректировки
  • Датчик положения дроссельной заслонки — контролирует положение дроссельной заслонки (которое определяет, сколько воздуха поступает в двигатель), поэтому ЭБУ может быстро реагировать на изменения, увеличивая или уменьшая расход топлива по мере необходимости
  • Датчик температуры охлаждающей жидкости — Позволяет ЭБУ определять, когда двигатель достиг своей надлежащей рабочей температуры
  • Датчик напряжения — Контролирует напряжение системы в автомобиле, поэтому ЭБУ может повысить скорость холостого хода, если напряжение падает (что указывает на высокую электрическую нагрузку)
  • Датчик абсолютного давления в коллекторе — Контролирует давление воздуха во впускном коллекторе
  • Количество воздуха, втягиваемого в двигатель, является хорошим показателем того, какую мощность он производит; и чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе, поэтому это значение используется для измерения вырабатываемой мощности.
  • Датчик частоты вращения двигателя — контролирует частоту вращения двигателя, которая является одним из факторов, используемых для расчета ширины импульса

Существует два основных типа управления для многопортовых систем : все топливные форсунки могут открываться одновременно, или каждая из них может открываться непосредственно перед тем, как открывается впускной клапан его цилиндра (это называется последовательным многопортовым топливом . впрыск ).

Преимущество последовательного впрыска топлива заключается в том, что если водитель делает внезапное изменение, система может реагировать быстрее, потому что с момента внесения изменения ей остается только ждать открытия следующего впускного клапана, а не следующего полного оборот двигателя.

,

Признаки неисправного или неисправного датчика соотношения воздух-топливо

Датчик соотношения воздух-топливо — один из ключевых компонентов многих современных систем управления двигателем. Большинство автомобилей имеют более одного датчика отношения воздух-топливо. Они устанавливаются в выхлопной системе до и после каталитического нейтрализатора. Датчики воздушно-топливного отношения непрерывно контролируют соотношение воздух-топливо в выхлопе транспортного средства и отправляют точный сигнал на компьютер двигателя, чтобы он мог в реальном времени регулировать подачу топлива и синхронизацию для максимальной эффективности и мощности.

Поскольку датчики отношения воздух-топливо играют непосредственную роль в регулировке и настройке двигателя, они очень важны для общей работы и эффективности двигателя и должны проверяться при возникновении проблем. Обычно, когда у них появляются проблемы, на автомобиле появляются некоторые симптомы, которые могут предупредить водителя о том, что датчик воздушно-топливного отношения может потребовать внимания.

1. Снижение топливной экономичности

Одним из первых симптомов проблемы с датчиком воздушно-топливного отношения является снижение топливной экономичности.Датчик воздушно-топливного отношения контролирует содержание кислорода в выхлопном потоке и отправляет данные в компьютер, чтобы он мог добавлять или вычитать топливо. Если есть какие-либо проблемы с датчиком, он может отправить на компьютер неверный или ложный сигнал, который может нарушить его вычисления и привести к чрезмерному расходу топлива. Мили на галлон (MPG) обычно снижаются с течением времени, пока не станет стабильно ниже, чем раньше.

2. Падение выходной мощности двигателя

Еще одним признаком возможной проблемы с датчиком воздушно-топливного отношения является снижение производительности двигателя и выходной мощности.Если датчик воздушно-топливного отношения стал «ленивым», со временем он отправит на компьютер задержанный сигнал, что приведет к общей задержке отклика для всего двигателя. Автомобиль может испытывать вялую или замедленную реакцию при ускорении, а также заметную потерю мощности и скорости разгона.

3. Неровный холостой ход

Еще один признак неисправности датчика воздушно-топливной смеси — грубый холостой ход. Поскольку воздушно-топливные смеси на низких оборотах двигателя должны быть очень точно настроены, сигнал датчика воздушно-топливного отношения очень важен для качества холостого хода двигателя.Неисправный или неисправный кислородный датчик может послать на компьютер неверный сигнал, который может вызвать холостой ход, что приведет к его падению ниже правильного уровня или колебаниям. В тяжелых случаях качество холостого хода может ухудшиться до такой степени, что автомобиль может даже заглохнуть.

Поскольку соотношение воздух-топливо играет такую ​​важную роль в расчетах компьютера двигателя, оно очень важно для общей производительности транспортного средства. Если вы подозреваете, что у вас может быть проблема с одним или несколькими датчиками соотношения воздух-топливо, обратитесь к профессиональному технику, например, из YourMechanic, для диагностики автомобиля и при необходимости замените датчики соотношения воздух-топливо.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о