Двс с самым высоким кпд: Двигатель ESTEC с самым высоким в мире тепловым КПД

Содержание

Двигатель ESTEC с самым высоким в мире тепловым КПД

Инженеры Toyota разработали способ применения цикла Аткинсона, используемого в тойотовских гибридах с 1997 года, для работы в двигателях обычных, не гибридных автомобилей. Цикл Аткинсона с высокой степенью сжатия – обычный способ, используемый в ДВС гибридов для повышения тепловой эффективности. Однако обратной стороной высокой степени сжатия является снижение крутящего момента, недостаток которого в гибридах компенсирует электромотор. Тепловая эффективность при малых нагрузках намного важнее для обычных ДВС, чем для ДВС, работающих в гибридных силовых установках. Похоже, что разработчикам Toyota удалось решить эту проблему.

Результатом их работы стал новый 1,3-литровый рядный четырехцилиндровый бензиновый двигатель ESTEC (Economy with Superior Thermal Efficient Combustion). На русский язык это определение можно перевести как «Экономия с высокоэффективным сгоранием». По заводской классификации мотор получил обозначение 1NR-FKE. Он развивает мощность 99 л.с. – это на 4 л.с. больше, чем мощность двигателя 1NR-FE, используемого в тойотовских автомобилях А и В-сегмента, таких как Yaris, iQ и др. Термический КПД ESTEC достигает 38% – это столько же, как и у ДВС, используемых в гибридах. Кроме того, при малых нагрузках ESTEC имеет улучшенную на 11% топливную экономичность.

Термический КПД современных моторов находится в пределах 36%, в то время как у ДВС, используемых в гибридах, он превышает 38%. Для достижения такого показателя в гибридных ДВС, кроме цикла Аткинсона, применяется охлаждаемая система EGR, электрический насос ОЖ и технологии низкого трения.В будущем такие же решения будут использоваться и в обычных ДВС, а термический КПД обоих типов двигателей превысит 40%. Считается также, что улучшение тепловой эффективности позволит преодолеть слабость атмосферных бензиновых ДВС при малых нагрузках. Превышение 40% уровня КПД будет достигаться, в основном, применением охлаждаемых EGR и развитием технологий сжигания бедных смесей. В дополнение к этим основным направлениям рассматриваются также технологии снижения трения и улучшение систем подъема клапанов.

Содержание статьи

Базовые компоненты ESTEC

Основными конструктивными особенностями ESTEC являются цикл Аткинсона, геометрическая степень сжатия 13,5:1 и система EGR с жидкостным охлаждением (обычный 1NR-FE имеет степень сжатия 11,5:1 и внутреннюю рециркуляцию выхлопных газов). Система бесступенчатого регулирования фаз VVT-iE с электроприводом является ключевым элементом в реализации цикла Аткинсона. Она позволяет быстро и с высокой точностью регулировать подъем впускных клапанов и избежать затруднений, возникающих из-за разницы температуры и давления масла при холодном пуске и на прогретом моторе.

В системе рециркуляции выхлопных газов используется эффективный охладитель и быстродействующий клапан. Кроме того, впускной трубопровод, охладитель и клапан непосредственно соединены между собой для уменьшения образования конденсата от охладителя.

Оптимизированная форма впускных каналов обеспечивает быстрое наполнение цилиндров, а создаваемое завихрение способствует улучшенному сгоранию смеси. Чтобы удовлетворить требованиям, как к производительности, так и к расходу топлива, выпускной коллектор выполнен по схеме 4-2-1. Это позволяет уменьшить количество остаточных газов в цилиндрах двигателя.

Восстановление производительности

Увеличение степени сжатия до 13,5:1 снизило крутящий момент со 104 Нм до 96 Нм. Чтобы восполнить эту потерю, Toyota применила выпускной коллектор измененной формы, уменьшающий количество остаточных газов и температуру в цилиндре; новую водяную рубашку, поддерживающую оптимальную температуру поверхности цилиндров; оптимизацию времени впрыска. Комбинация этих мер (из которых главную роль играет измененный выпускной коллектор) позволила повысить крутящий момент до 105 Нм.

При малых нагрузках из-за работы охлаждаемой EGR происходят чрезмерные колебания крутящего момента. Для устранения этого недостатка используются система регулирования выпускных клапанов (Exhaust VVT) и внутренняя рециркуляция выхлопных газов. При средних и больших нагрузках работа Exhaust VVT приостанавливается, а шаг клапана системы EGR увеличивается.

Охлаждение является эффективной мерой против снижения крутящего момента у двигателей с высокой степенью сжатия. Однако одновременно это приводит к увеличению расхода топлива из-за повышения трения и потерь на охлаждение. В обычных моторах верхняя часть цилиндра нагревается больше, чем нижняя. Из-за неравномерного нагрева увеличивается трение в цилиндре. В ESTEC новая водяная рубашка со специальной прокладкой выравнивает температуру в разных частях поверхности цилиндра, снижая потери на трение и возможность возникновения детонации.

Цикл Аткинсона

Цикл АткинсонаЦикл Аткинсона

В двигателе, работающем по циклу Аткинсона, на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ.

Во-первых, снижаются насосные потери, т. к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок.

Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает, по так называемому, циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т. е., с уменьшением потерь выпуска. Таким образом,получаем лучшие экологические показатели, экономичность и больший КПД, но меньшую мощность.

Роторно-волновой двигатель с высоким КПД седунова вихрова паровой самый

Роторно-волновой двигатель является синергией поршневого и газотурбинного двигателя.

 

 

Роторно-волновой двигатель с расчетным механическим КПД – 97 % имеет высокий ресурс по износу деталей и ресурсу двигателя в целом – будут изнашиваться только подшипники, которые имеют большой запас по износу.

Технология ожидает финансирования!

 

Описание роторно-волнового двигателя

Роторно-волновой двигатель имеет следующий принцип работы

Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами

Преимуществароторно0волнового двигателя

Роторно-волновой двигатель может применяться

 

Описание роторно-волнового двигателя:

Роторно-волновой двигатель – это объемная машина, воспроизводящая последовательность работы газотурбинного двигателя. В нем совершенно устранено возвратно-поступательное движение рабочих органов, ротор полностью уравновешен и вращается с постоянной угловой скоростью. Рабочее тело, как и в турбине, движется вдоль оси двигателя, траектория движения – винтовая линия. В конструкции отсутствует вредное пространство, ограничивающее рост степени сжатия рабочего тела. Из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части, снимаются ограничения по ресурсу и числам оборотов двигателя.

Роторно-волновой двигатель с высоким КПД

В основе кинематики РВД лежит сферический механизм, где оси его основных деталей пересекаются в одном месте – центре воображаемой сферы.

Установленный с минимальным зазором конический винтовой ротор совмещает вращение с противоположным ему планетарным обкатыванием по внутренним огибающим корпуса. Накладывая два эти вида движения на любые сечения ротора (кроме центра – точки его перегиба), можно увидеть, что они совершают в определенной последовательности равные угловые колебания в пазах корпуса, образуя волны, которые последовательно перекатываются по ходу винтовых поверхностей корпуса. Аналогичный процесс можно видеть на море, наблюдая в ветреную погоду за перемещением волн в «стоячей воде».

В компрессорном отсеке формирование и движение волн начинается от периферии по направлению к центру, а в расширительном отсеке – наоборот – от центра к периферии.

Роторно-волновой двигатель с высоким КПД

1 – Ротор; 2 – Корпус; 3 – Вал отбора мощности; 4 – Шарнир равных угловых скоростей; 5 – Эксцентрик; 6 – Блок шестерен. А – впускное окно, Б – выпускное окно, В – компрессорный отсек, Г – камера сгорания, Д – расширительный отсек, φ – угол наклона ротора.

Ротор (1) и вал отбора мощности (3) соединяются между собой в центре двигателя шарниром Гука (4), который можно назвать шарниром равных угловых скоростей (ШРУСом). Необходимое ротору «дополнительное» обкатывание по внутренним огибающим корпуса задается вспомогательным устройством – так называемым «генератором волн». Его основной элемент – вращающийся на основном валу эксцентрик (5), с приводом через блок шестерен (6) все от того же вала. Эксцентрик, наклоняя ротор от 3 до 6 градусов, обеспечивает угловое качание сечениям ротора в пределах от 12 до 24 градусов. В такой комплектации расчетный механический КПД двигателя составит – 97 %.

Возможность использования регенеративных схем теплообмена в РВД способствует максимальной степени выделения в работу  химической энергии сгорания топлива:

Роторно-волновой двигатель с высоким КПД

 

Роторно-волновой двигатель имеет следующий принцип работы:

Как и в газовой турбине, газ в РВД перемещается между рабочими отсеками: от компрессора к ресиверу, далее в совмещенную или разделенную  камеру сгорания с камерой расширения, используя режим непрерывного течения  порций газа по каналам, при давлениях и температурах аналогично происходящих в камерах сгорания ДВС. Каждая порция газа, двигаясь в общем потоке, представляет из себя непрерывно изменяющийся в объеме, замкнутый капсулированный объем.

С началом вращения, винтовые поверхности ротора начинают открывать внутренние полости винтовых каналов компрессорного отсека, засасывая и них воздух двумя потоками, смещенными относительно друг друга на 180 градусов. За один оборот ротора в оба канала компрессорного отсека засасываются и отсекаются от впускного тракта по две порции воздуха. При дальнейшем повороте, каждая порция воздуха начнет самостоятельно перемещаться к центру двигателя, непрерывно сокращаясь в объеме за счет уменьшения шага и амплитуды самого витка. Процесс сжатия будет продолжаться до тех пор, пока все уменьшающийся объем со сжатым воздухом не подойдет к камере сгорания. В этот момент процесс внутреннего сжатия воздуха в компрессорном отсеке закончится, наступает следующий этап – выталкивание сжатого воздуха в камеру сгорания тыльной стороной витка, ближе других находящегося к центру ротора. Этот процесс сопровождается непрерывным распыливанием топлива в воздушном потоке с последующим его сгоранием в общей камере, куда и выталкиваются все порции воздуха. Для первоначального поджигания топливовоздушной смеси в камере устанавливается запальная свеча. После запуска дальнейшее поджигание смеси должно поддерживаться газами, оставшимися от предыдущих циклов в общей камере сгорания. Последние, с высокой температурой и давлением покидая камеру сгорания, заполняют на роторе винтовые каналы расширительных отсеков, расположенных по другую сторону от центра ротора (точки, где шаг и амплитуда угловых колебаний равна нулю). С поворотом последнего происходит увеличение объемов расширительных отсеков за счет чего и осуществляется рабочий ход. На момент максимального расширения, кромки наружных витков ротора открываются и газы сначала свободно, а затем принудительно выдавливаются в выпускной коллектор. Интервал выпуска отработанных газов из очередной камеры расширения составит 180 градусов. Часть полученной в цикле мощности возвращается телом ротора в компрессорный отсек.

 

Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами:

ДВСГТУРоторно-волновой двигатель
Полный цикл рабочего тела осуществляется в одном цилиндре (вспомогательные такты заставляют конструировать органы газораспределения)Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения) Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения)
 Высокое давление и температура сгорания топливо-воздушной смесиНизкое давление и температура сгорания топливо-воздушной смесиВысокое давление и температура сгорания топливо-воздушной смеси
 Оптимальная работа при а (коэфф. избытка воздуха), близких к 1.Оптимальная работа с а от 3+5 и вышеОптимальная работа при а , близких  к 1
‘Хорошая экономичностьНизкая экономичностьВысокая экономичность
Оптимальный диапазон реализуемых мощностей от 0,1 до 1000 кВтОптимальная мощность от 1000 до 100000 кВтОптимальная мощность от 1 до 100000 кВт
Каждый тип объемной машины работает на своем сорте топливаПотребляет любой вид жидкого или газообразного топливаПотребляет любое жидкое, газообразное, твердое распыленное топливо
Двигатель работает с охлаждениемДвигатель работает без охлажденияДвигатель работает без охлаждения
Работа сопровождается неполным расширением отработанных газовПолное расширение отработанных газовПолное расширение отработанных газов
Эффективное глушение выхлопаНеэффективное глушение выхлопаОтсутствие необходимости глушениявьшюпа
Высокий вес силовой установки: 1+20 кг/кВтНизкий вес силовой установки: до 0,1 кг/кВтВес силовой установки в пределах 0,1+0,25 кг/кВт
При движении звеньев механизма в цепи присутствуют «мертвые точки». Для их преодоления устанавливается маховикОтсутствие «мертвых точек» при движении механизмаОтсутствие «мертвых точек» при движении механизма
Неполное уравновешивание инерционных сил и их моментовНеуравновешенных сил и моментов не возникаетПолное уравновешивание инерционных сил, или вообще неуравновешенных сил не возникает
Большие потери на трение (15+20%)Низкие потери на трение (2+4%)Низкие потери на трение (3+6%)
Выбраны резервы роста эффективного КПДВыбраны резервы роста эффективного КПДСуществует тенденция роста эффективного кпд

 

Преимущества роторно-волнового двигателя:

– роторно-волновой двигатель имеет неограниченную мощность, малые габариты и вес (0.25-0.40 кг/кВт), высокую экономичность, свободу выбора топлива;

рабочий процесс для камеры постоянного горения, позволяет, не останавливая двигатель, подавать в него любой вид жидкого, газообразного или даже твердого распыленного топлива;

– высокий ресурс по износу деталей и ресурсу двигателя в целом. В двигателе будут изнашиваться только подшипники, а для них ресурс в 30 – 40 тыс. рабочих часов не предел;

роторно-волновой двигатель не имеет ограничений по ресурсу и числам оборотов из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части;

– ротор вращается с постоянной угловой скоростью и уравновешивается;

вместо клапанов, или окон, в конструкции используются каналы неограниченной пропускной способности для непрерывного поступления воздуха в рабочие отсеки двигателя;

– в РВД газовые силы, действующие на ротор, постоянны и непрерывны, что делает ненужной установку маховика, а в некоторых случаях и противовесов, применяемых для полного уравновешивания двигателя;

расчетный индикаторный КПД простого цикла РВД в адиабатном исполнении и умеренной степени сжатия равной 15 со степенью расширения 36 составит – 51 %. Расход топлива в этом случае может составить 171 г/кВт, при удельном весе силовой установки 0,15 – 0,25 кг/кВт;

– расчетный механический КПД двигателя составляет – 97 %.

 

Роторно-волновой двигатель может применяться:

в легких вертолетах, самолетах и дирижаблях;

в быстроходных катерах, экранопланах;

в мощных вездеходах, передвижных электростанциях;

в приводном оборудовании для нефтегазового комплекса.

 

карта сайта

автомобильный двигатель на катере
высокие обороты при запуске двигателя
высокий кпд теплового двигателя
газовые турбины авиационных двигателей
газовый и бензиновый двигатели
двигатели работающие на газовом топливе
для катера купить с высоким кпд
двигатель на приору 16 клапанов новый
двигатель ваз 2112 16 клапанов цена новый
новый двигатель ваз 2110 8 клапанов цена
газовое оборудование на дизельный двигатель
роторно поршневой двигатель купить
роторный двигатель внутреннего сгорания
стационарные двигатели для катеров катера купить
характеристика газового двигателя роторного двигателя
купить двигатель ваз 2107 инжектор цена новый
в цилиндре двигателя внутреннего сгорания давление
двигатель внутреннего сгорания характеристики кпд
работа совершенная двигателем внутреннего сгорания
купить двигатель приора 16 клапанов
купить новый двигатель фольксваген
свечи для газовых двигателей
устройство газового двигателя
мощность двигателя катера
новые двигатели на автомобили
рабочие циклы система седунова вихрова паровой самый

 

Коэффициент востребованности
2 908

Инженеры Тойоты приблизили КПД бензиновых моторов к дизелям — ДРАЙВ

Японцы обещают поставить новые двигатели на целый ряд легковушек, которые подошли к смене поколений либо плановому обновлению. Со временем это семейство моторов охватит 30% моделей концерна. В частности, они будут использоваться на автомобилях, основанных на архитектуре TNGA.

Компания Toyota планирует до конца 2015 года вывести в свет четырнадцать двигателей из новой серии. Пока она представила пару новинок: агрегаты 1.3 (на фото под заголовком) и 1.0. В них нашли применение несколько разработок, позволивших поднять расчётный термический КПД до 38 и 37% соответственно. Причём первое число инженеры считают практически рекордным для массовых бензиновых двигателей. Оно сопоставимо с тепловой эффективностью легковых дизелей, которые показывают более 40%. Новые ДВС используют цикл Аткинсона (точнее Миллера, это его разновидность). Обычно его применяют в гибридах, но эти моторы рассчитаны на самостоятельную работу.

В цикле Аткинсона впускные клапаны закрываются позже обычного. Так фактическая степень сжатия смеси оказывается ниже, чем геометрическая. А вот расширение происходит полное. В результате удаётся лучше использовать энергию горячих газов и выбрасывать меньше полезного тепла в выхлопную трубу. Правда, для корректной работы такого цикла на разных нагрузках и оборотах не обойтись без фазовращателей.

Степень сжатия у нового мотора с объёмом 1,3 литра весьма высока — 13,5:1. Почти столько же в маздовских агрегатах Skyactiv-G (14:1). Чтобы побороть детонацию, конструкторы пошли на несколько ухищрений. Например, рубашка охлаждения модифицирована таким образом, чтобы существенно снизить температуру стенок цилиндра в самом проблемном месте — вблизи выпускных клапанов. Выпускной коллектор построен по схеме 4-2-1, что улучшило очистку цилиндров от отработанных газов. А на такте впуска в цилиндре формируется вертикальный вихрь, который влияет на распределение смеси и полноту её сгорания.

На рисунке показаны выпускной коллектор новой «четвёрки» и вихрь на впуске, который генерируется специально подобранной формой впускных каналов.

Помимо этого, сразу несколько мер были приняты для снижения тепловых и механических потерь. Это изменяемые фазы на впуске с электрическим фазовращателем VVT-iE, рециркуляция отработанных газов с охлаждением, полимерное покрытие подшипников, специальная обработка поверхности юбки поршня, цепной привод системы газораспределения с низким трением, ремень для привода навесного оборудования с низкими внутренними потерями при изгибе.

Интересно, что мотор 1.8 2ZR-FXE на нынешнем Приусе показывает тепловой КПД 38,5% при степени сжатия 13:1. Но то агрегат, специально созданный под гибридную систему, которая может уравновесить недостатки цикла Аткинсона (скажем, неустойчивость работы на малых оборотах).

Практически все эти приёмы использованы и на литровом агрегате, который Toyota спроектировала в кооперации с Daihatsu. Степень сжатия тут пониже (11,5:1), но у его предшественника (1KR-FE) было 10,5. Японцы утверждают, что одна только замена прежних моторов на новые принесёт экономию топлива в 10%. А в сочетании с несколькими другими мерами (вроде системы start/stop) — до 15% (с двигателем 1.3) и до 30% (с 1.0).

Мы полагаем, что улучшенный литровый агрегат после запуска на поток достанется новому малышу Aygo, а заодно и его собратьям Peugeot 108 и Citroen C1. Наверняка его подарят и обновлённому Ярису.

Школьники изобрели самый мощный двигатель в мире

двигатель

История создателей самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

Технологии неуклонно развиваются. О том, как защитить свою электропроводку, можно читать на сайте интернет-магазина «Электрика Шоп».

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.
В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.
Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,
КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%.

двигатель

Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.
«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью Школьник-младший.

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.
Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки

двигатель

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.
Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов.
Принципиальным в ней было то, что в двигателе Школьников не камера,а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.
Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.
Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

двигатель
Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.
Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.
Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг.

Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания.

Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший.
То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

двигатель

Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр.
Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.
«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.
Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе.

Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник.

…Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале «Популярная механика». В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.

Источник

Читайте ещё: Как производят ракетные, авиационные и наземные двигательные установки

Самый большой дизельный двигатель в мире — SeaNews

Сегодня дизельные двигатели используются повсеместно: на тепловозах и грузовиках, судах и тракторах, легковых автомобилях и дизельных электростанциях.

Дизельный двигатель основан на воспламенении в цилиндре распыленного топлива (воспламенение происходит от воздуха, нагретого при сжатии). Дизельный двигатель может использовать низкосортное топливо, выдает высокий вращающий момент при низких оборотах и имеет высокий КПД (40-45%), что делает его экономичнее бензиновых двигателей, где около 70% топлива сгорает, не преобразовываясь в механическую энергию.

Самый большой дизельный двигатель в мире

Самый большой дизельный двигатель в миреДизельный двигатели могут быть очень большими. Наиболее крупные размеры имеет судовые агрегаты, установленные на больших судах. Но среди этих гигантов выделяется одна модель, которая по праву занимает почетное звание самого большого дизельного двигателя в мире.

Компания Wartsila хорошо известна всем специалистам. Она специализируется на производстве судовых энергетических установок. Одна из них – RTA-96C. Это и есть линейка двигателей, поражающих воображения обывателя.

Технически RTA-96C представляет собой двухтактный турбокомпрессорный двигатель, число цилиндров может варьироваться от 6 до 14. Версия с 14 цилиндрами является крупнейшим поршневым ДВС и устанавливается на крупнотоннажные контейнеровозы. Высота этого двигателя превышает 13 метров, длина – 27 метров, вес – свыше 2,3 тыс. тонн.

Максимальная мощность, которую способен развить этот гигант, равна почти 109 тыс. лошадиных сил. Первым судном, получившим такой двигатель, стала знаменитая «Emma Maersk», которая с вместимостью 11 тыс. TEU совсем недавно была самым большим контейнеровозом в мире.

Диаметр каждого цилиндра составляет почти метр (960 мм) при ходе поршня в 2500 мм. Объем цилиндров равен 25,5 тыс. литров.

Максимальное количество оборотов традиционно небольшое – 102, но крутящий момент при этом развивается свыше 7,5 млн Нм. Удельный расход топлива составляет 3,8 л/с, в час же агрегат «съедает» 13 тыс. литров бункера при максимальной мощности.

КПД этого двигателя-гиганта является самым высоким среди всех произведенных когда-либо дизельных двигателей – более 50%.

Некоторые сравнения, чтобы оценить мощность двигателя: он может обеспечить электроэнергией небольшой город. При 102 оборотов в минуту он производит 80 млн Ватт электроэнергии. Если средняя бытовая электролампа потребляет 60 Вт, 80 миллионов Ватт вполне достаточно для 1,3 млн ламп. Если в среднестатистической квартире одновременно горит 6 осветительных ламп, двигатель будет производить достаточное количество электроэнергии, чтобы осветить 220 тыс. домовладений. Этого достаточно для обеспечения электроэнергией города с 500 тыс. населения.

Коленчатый вал

Стоимость работы двигателя

Двигатель Wartsila-Sulzer RTA96 потребляет 13 тыс. литров топлива в час. Если в барреле нефти 158,76 литра, самый большой двигатель в мире потребляется 81,1 баррелей нефти в час. Если цена на нефть составляет $67/баррель на мировых рынках нефти, то стоимость 1 часа работы двигателя с точки зрения расхода топлива будет составлять $5,4 тыс. в час.

Самый большой дизельный двигатель в мире

Самый большой дизельный двигатель в миреПоршни

Электродвигатели с высокой энергоэффективностью — Control Engineering Russia

Экологическое мышление мотивирует многих, а экология сама по себе является темой повседневной жизни. К сожалению, не в сфере бизнеса, хотя именно там любое ограничение потребления энергии означает огромную экономию. Электродвигатели с высоким КПД могут помочь в реализации этой задачи, тем более, что все более жесткие нормы во многих странах просто требуют этого.

Стоит знать, что когда говорят о двигателях с высоким КПД, то это относится обычно к традиционным асинхронным двигателям. Индукционные двигатели выпускаются в стандартном энергетическом исполнении, в исполнении с повышенной эффективностью и суперэффективные, – говорит Дэвид Хансен, глобальный менеджер продукта Kinetix Motion Control Rockwell Automation. — Двигатели же с постоянными магнитами выпускаются только по одному энергетическому классу.

Не случайно двигатели с постоянными магнитами предлагаются только в одном энергетическом классе: их конструкция сама по себе обеспечивает высокий КПД, поскольку исключает потребность намагничивания ротора. Джон Малиновски, старший продукт-менеджер в фирме Baldor Electric Company подчеркивает, что существует группа индукционных двигателей, которые соответствуют международным стандартам IEC 60034-30 по категории IE3 (высшая категория) и американским NEMA по категории Premium (тоже высшая категория).

Экономия за год благодоря применению двигателя с высоким КПД

По этой причине обсуждение ограничится универсальными асинхронными двигателями, роторы которых изготовлены из ферромагнитных материалов. Характеристики эффективности двигателей с постоянными магнитами будут обсуждены в другой раз.

— Двигатели энергетической категории Premium (аналог IE3) более чувствительны к исполнению, чем более старые двигатели, они создают меньше шума и вибрации, выделяют меньше тепла и являются более долговечными, — утверждает Малиновски.

— Более высокий КПД современных асинхронных двигателей является результатом совершенствования конструкции, правильной геометрии обмоток, использования более качественных материалов (в том числе меди в роторе), что приводит к более эффективному преобразованию электрической энергии в механическую, — утверждает Петер Фишбах, менеджер промышленного сектора в фирме Rexroth.

 

Что определяет КПД двигателя

какие потери имеют место в двигателях— Ключом к более высокому КПД является ограничение потерь – констатирует Малиновски. – Больше меди в обмотке — меньше потери в проводимости, а в свою очередь более качественная магнитная сталь уменьшает потери на перемагничивание. Меньшие потери мощности это меньший нагрев, следовательно, и меньший охлаждающий вентилятор – очередная выгода.

Фишбах добавляет, что б?льшая часть потерь ? это потери на проводимости в роторе и статоре, часто называемые потерями на гистерезиса или потерями в железе.

Хансен перечисляет по пунктам список конструктивных решений, повышающих энергоэкономичность их приводов:

  • Сопротивление обмоток. ? С ростом сопротивления обмоток снижается КПД. Чтобы повысить эффективность двигателей, проектировщики стараются снизить сопротивление за счет увеличения количества меди в желобках и уменьшения обмоток, выступающих за статор.
  • Ламинирующее средство. – Потери в обмотках статора зависят непосредственно от качества примененной магнитной стали и от ламинирующего средства. Тонкий изолирующий слой приводит к меньшим потерям в сердечнике, нежели толстый слой.
  • Геометрия зубьев. – Специальная геометрия зубьев увеличивает концентрацию магнитного потока внутри двигателя. Б?льшая концентрация ? это меньшее рассеяние энергии, а следовательно, более высокий КПД

 

Важен комплекс

— Целью большинства промышленных применений является сочетание высокого КПД с высокой производительностью, – считает Фишбах. — Ключ к успеху анализ, моделирование и оптимизация всей системы, предшествующие принятию решения о закупке отдельных компонентов, таких, как двигатели.

какие потери имеют место в двигателяхС этим соглашается Малиновски: — Замена двигателей — это простой шаг в стремлении к большей эффективности, но выгода здесь ограничена. Стоит иметь двигатели с КПД порядка 95%, но они должны взаимодействовать с высококачественными трансмиссиями с КПД 90-95%, а не с изношенными конструкциями с КПД 50-60%.

Фишбах подтверждает: — Более высокая эффективность — понятие относительное, поскольку надо учитывать и другие факторы, влияющие на общую эффективность системы, такие, как время цикла или объем производства. Например, моментный двигатель с КПД 80% может потреблять меньше энергии, чем сервопривод с КПД  95%, поскольку не требует применения трансмиссии, а это может дополнительно увеличивать производительность системы.

 

Чего не делать

— Самые большие ошибки совершают те инженеры, которые все внимание сосредотачивают на щитке двигателя и ожидают пропорционального роста эффективности в их приложении, – предостерегает Фишбах.

Любой, в том числе и энергосберегающий двигатель имеет свою характеристику, поэтому он должен быть подобран к конкретному применению. Например, двигатель энергетического класса «премиум» не сэкономит много энергии, если он будет загружен частично или будет использоваться спорадически.

Малиновски приводит пример замены старого двигателя, работающего с центробежным насосом, на новый премиум-класса. Ротор насоса, который был спроектирован под взаимодействие со старым двигателем, не заменяют. Новый, более производительный двигатель будет, вероятно, работать с более высокими оборотами, что вызовет общий рост потребления энергии. Система может быть более энергоэффективна, но дополнительная работа, которая будет совершена, может быть ненужной.

— Проектировщики, которые действительно заинтересованы увеличением эффективности, не будут стремиться исключительно к замене двигателя, а проанализируют всю систему на предмет расходования энергии, – советует Хансен. — Даже самый производительный двигатель, работая с низкоэффективной передачей, не принесет существенных энергетических выгод. Любая механическая передача между двигателем и нагрузкой — это потеря энергии. Очень точные геликоидальные трансмиссии сразу после извлечения из упаковки имеют КПД 90-95%. Изношенная трансмиссия — это КПД на уровне 50-60%.

— Самым лучшим решением с точки зрения эффективности машины был бы отказ от механических трансмиссий и применение моментных двигателей (с постоянными магнитами) – заключает он.

А вы включаете в проект, а потом покупаете двигатели с высоким КПД? Будьте к этому готовы.

Facebook

Twitter

Вконтакте

Google+

Так в чем же проблемы изготовления двигателя Стирлинга с высоким КПД?: engineering_ru — LiveJournal

Beta_stirling_animation.gif
   Как и большинство «виртуальных стирлингостроителей», заинтересовавшихся теоретическим КПД двигателя «Стирлинга», столкнулся с множеством вопросов и заново вспомнил (да и пересмотрел с практической точки зрения) законы термодинамики. В итоге, так до конца и не выяснил, почему же при таких хороших показателях в теории, все так плохо обстоит на практике. Вот то, что смог нарыть в Интернет.

  1.  Теоретический КПД, вроде бы, может быть равен КПД идеального цикла Карно (то есть максимально возможному, при определенной разнице температур),но при условии «идеального» регенератора, с коэффициентом теплопередачи 1,0. Вот тут неясно. В одних источниках пишут, что максимальный коэффициент 0,5, обосновывая тем, что тепло будет переходить от горячего тела к холодному, пока не сравняется их температура, то есть достигнет половины разницы температур горячего и холодного тела (тот самый коэффициент 0,5). Но в некоторых источниках упоминается коэффициент теплопередачи регенератора до 0,98, при этом не описывается, каким образом это достигается. Где правда, непонятно.
  2. Альфа-стирлинг (два цилиндра с поршнями — горячий и холодный) имеет проблемы со смазкой горячего поршня. Тогда почему именно этот тип пользуется популярностью?
  3. Бетта-стирлиг (один цилиндр, с вытеснителем в горячей части и поршнем в холодной) и гамма-стирлинг (два цилиндра — горячий с вытеснителем и холодный с поршнем) не имеют проблем со смазкой, так как трение о стенки только в холодном цилиндре, а вытеснитель имеет зазор от стенок цилиндра и не нуждается в смазке. То есть, такие двигатели могут работать с большой разницей температур, а значит с большим КПД. Но, почему-то, они считаются менее перспективными, чем альфа-стирлинги.

   К тому же, важным показателем, влияющим на КПД, является время циклов (количество оборотов) – чем оно больше, тем лучше теплообмен и выше КПД. Но, при этом, наблюдается «гонка за оборотами», которую обосновать чем-то, кроме как маркетинговыми интересами довольно трудно. То есть, причина типа «потери в редукторе при низких оборотах» не выдерживает критики – такие потери исчисляются всего лишь процентами, а прирост КПД может быть выше 10-30%. Поэтому, создается ощущение, что разработчики гонятся больше за такими характеристиками, как удельная мощность и оборотистость, чтобы противопоставить «стирлинги» ДВС, а КПД приносят в жертву.

   Но ведь можно оставить пока гонки с ДВС на транспорте и сосредоточится на стационарных двигателях Стирлинга, работая над повышением их КПД и удешевлением конструкции.  Работающие на любом виде топлива, в том числе и на солнечной энергии,  эти двигатели могут, в перспективе, конкурировать с солнечными батареями. И у них неплохие перспективы в области возобновляемой энергии, в том числе древесное топливо, которое за счет солнечной энергии «восстанавливается» за несколько десятилетий. И опять же, всеядность этих двигателей позволяет создавать электростанции (в том числе бытовые) комбинированного типа – пока есть солнце, работает от солнечной энергии, когда нет, то на твердом топливе.

   Правда, достижение высокого КПД, это не единственное направление, за которое стоит бороться, двигатели Стирлинга имеют еще один недостаток – так как источник тепла находится за пределами объема двигателя, а рабочее тело (газ) имеет низкую теплопроводность, то получается, что в работе участвует только газ, находящийся у стенок цилиндра. А значит, что отношение роста мощности к увеличению объема цилиндра, находится в обратной квадратичной зависимости. То есть, чтобы увеличить мощность в 5 раз, надо увеличить объем цилиндра в 25 раз.
   Именно поэтому, на заре «стирлингостроения» более-менее мощные двигатели были массивнее даже паровых машин при той же мощности. Сейчас эта проблема решается путем накачки двигателя газом под большим давлением, то есть увеличивается масса рабочего тела при том же объеме. Но этот путь тоже тупиковый – в двигателях больше пары литров, опять же, стоит та же проблема, квадратичное отношение роста объема к росту мощности. Да и проблемы с утечкой рабочего тела при давлениях в 100-200 атмосфер трудно решить.

   На этом фоне, более перспективным видится другое решение – заставить работать весь газ внутри двигателя, независимо от объема. Такое решение, несмотря на простоту реализации было предложено только недавно (источник — http://zayvka2016131416.blogspot.ru/) — поставить насос или вентилятор, которые будут создавать потоки газа внутри двигателя. И, по аналогии с вентилятором, дующим на радиатор, будет увеличиваться скорость охлаждения стенок цилиндров рабочим газом двигателя и обеспечиваться максимальное участие этого газа в работе, независимо от размера цилиндра. По идее, это должно дать толчок развитию двигателей Стирлинга, так как позволяет создавать довольно простые и мощные варианты этих двигателей.
   А если не гнаться за массогабаритными показателями автомобильных ДВС, то, может быть, скоро мы наконец то услышим о двигателях, работающих на дровах или солнечной энергии, с КПД 60-70%. И пусть они не смогут конкурировать по размерам с ДВС, но зато могут обеспечить выработку дешевой электроэнергии. А это, в свою очередь, может поспособствовать увеличению экономической целесообразности электромобилей. Ну, а в сочетании с получающими распространение пиролизными  котлами, может привести к полной автономии в энергоснабжении жилья (особенно новых домов, для подключения которых к электросети и газопроводу требуется немалая сумма).

   Вот как-то так. Буду рад услышать критику моих выкладок.

Как морской лед влияет на глобальный климат?

Морской лед в Северном Ледовитом океане. Хотя морской лед существует в основном в полярных регионах, он влияет на глобальный климат.

Знаете ли вы?

Морской лед также влияет на движение океанических вод. Океан соленый, и когда образуется морской лед, большая часть соли выталкивается в океанскую воду подо льдом, хотя некоторое количество соли может застрять в небольших карманах между кристаллами льда.Вода под морским льдом имеет более высокую концентрацию соли и более плотную, чем окружающая вода океана, поэтому она тонет и движется от поверхности. Таким образом, морской лед способствует циркуляции конвейерной ленты мирового океана. Холодная плотная полярная вода спускается с поверхности и циркулирует по дну океана к экватору, в то время как теплая вода со средней глубины на поверхность движется от экватора к полюсам.

Морской лед — это замороженная вода, которая образуется, расширяется и тает в океане.Он отличается от айсбергов, ледников, ледяных щитов и шельфовых ледников, которые берут начало на суше. По большей части морской лед расширяется в зимние месяцы и тает в летние месяцы, но в некоторых регионах часть морского льда остается круглый год. Около 15 процентов мирового океана покрыто морским льдом в течение определенного периода времени.

Хотя морской лед существует в основном в полярных регионах, он влияет на глобальный климат. Яркая поверхность морского льда отражает много солнечного света в атмосферу и, что важно, обратно в космос.Поскольку эта солнечная энергия «возвращается» и не поглощается океаном, температуры ближе к полюсам остаются прохладными по сравнению с экватором.

Когда повышение температуры постепенно тает морской лед, остается меньше ярких поверхностей, отражающих солнечный свет обратно в атмосферу. Поверхность поглощает больше солнечной энергии, и температура океана повышается. Это начинает цикл нагревания и таяния. Более теплая вода задерживает рост льда осенью и зимой, а следующей весной лед тает быстрее, открывая темные воды океана на более длительный период следующим летом.

Изменения количества морского льда могут нарушить нормальную циркуляцию океана, что приведет к изменениям глобального климата. Даже небольшое повышение температуры может со временем привести к еще большему потеплению, что сделает полярные регионы наиболее чувствительными к изменению климата на Земле.

,

3 Энергоэффективность на транспорте | Реальные перспективы энергоэффективности в США

было задействовано в структуре продаж. Относительный расход топлива для легковых и легких грузовиков сопоставим. Эти цифры относятся к автомобилям с уровнями производительности и внутренними размерами, по существу, такими же, как у современных новых автомобилей, и со снижением веса автомобиля на 20 процентов, снижением коэффициента лобового сопротивления на 25 процентов и снижением трения качения в шинах на 33 процента. коэффициент.Такое снижение относительного расхода топлива указывает на то, чего в среднем можно было бы достичь в транспортных средствах за счет этих улучшений и изменений в силовой передаче и технологиях транспортных средств.

Взятые вместе, эти усовершенствования двигателя и трансмиссии, уменьшение веса и другие улучшения, не связанные с двигательной установкой, могут снизить расход топлива автомобиля с бензиновым двигателем внутреннего сгорания примерно на 35 процентов примерно к 2035 году.

Хотя современные автомобили с дизельным двигателем имеют 20-процентное преимущество в потреблении топлива в эквиваленте бензина по сравнению с современными автомобилями с бензиновым двигателем ICE, этот разрыв, вероятно, сократится (например,g., до 15 процентов к 2035 году), так как бензиновый двигатель имеет больший потенциал усовершенствования.

Поскольку их технология является относительно новой и, таким образом, может обеспечить более глубокое сокращение расхода топлива транспортными средствами, HEV и PHEV имеют больший потенциал для снижения расхода топлива (например, 47 процентов и 73 процентов соответственно), чем силовые агрегаты с ДВС. Однако обратите внимание, что они по-прежнему зависят от нефти или другого жидкого топлива.

Сокращение выбросов парниковых газов от бензиновых и дизельных двигателей внутреннего сгорания, дизельных двигателей высокого давления и PHEV пропорционально сокращению потребления нефти.Дальнейшее сокращение выбросов парниковых газов может быть достигнуто за счет автомобилей, если эффективное содержание углерода в топливе будет снижено за счет добавления биотоплива с низким чистым выбросом углерода (NAS-NAE-NRC, 2009b).

BEV и HFCV — это две долгосрочные технологии, которые не обязательно зависят от нефти или альтернативного углеводородного топлива и могут иметь нулевые выбросы из выхлопных труб критериальных загрязнителей и CO. 2.

Для PHEV, BEV и HFCV выбросы от скважины к резервуару, возникающие при производстве электроэнергии и водорода, определяют полный потенциал этих транспортных технологий по сокращению выбросов парниковых газов.Повышение эффективности самих транспортных средств вместе с производством электроэнергии и водорода с низким или нулевым уровнем выбросов, которые им необходимы, открывают потенциал для резкого сокращения общих выбросов парниковых газов. В случае реализации эти улучшения могли бы дать PHEV преимущество перед HEV с точки зрения снижения потребления нефти и выбросов парниковых газов.

Комиссия считает, что оценки, приведенные в Таблице 3.2, могут быть реализованы, если

,Высокопроизводительный конвертер Стирлинга

демонстрирует долговременную производительность

Это сообщение в блоге возникло из Отчета о ключевых технологиях Управления научной миссии за 2016 год (20 МБ PDF).

Развитие технологий

Исследовательский центр NASA Glenn Research Center уже более десяти лет поддерживает разработку высокоэффективных преобразователей энергии Стирлинга для потенциального использования в радиоизотопных энергетических системах (RPS). Преобразователи Стирлинга — это двигатели, которые преобразуют тепло в электричество за счет генерации линейного генератора переменного тока.

ВМТ № 13 и № 14 на расширенной эксплуатации в исследовательской лаборатории Стирлинга. (Источник: Исследовательский центр НАСА Гленна)

Преобразователи энергии Стирлинга

в RPS потенциально могут уменьшить количество плутониевого топлива, необходимое для достижения заданного уровня мощности, в четыре раза, при этом сохраняя длительный срок службы и высокую надежность, необходимые для поддержки космических полетов. В 2016 году исследователи GRC проанализировали долгосрочную демонстрацию технологии преобразователя мощности Стирлинга, и результаты указывают на перспективность использования этой технологии в будущих миссиях.

Поперечное сечение ВМТ (Источник: NASA Glenn Research Center)

В начале 2000-х годов было изготовлено несколько прототипов преобразователей Стирлинга, которые были введены в длительную эксплуатацию в GRC, чтобы продемонстрировать долгий срок службы. Два из этих блоков, обозначенные как «Демонстрационные преобразователи технологий» (TDC) № 13 и № 14, наработали по 103 000 часов (11,7 лет) каждый. В 2016 году команда NASA GRC завершила оценку производительности TDC и не обнаружила ухудшения производительности, что свидетельствует о том, что эти устройства продемонстрировали надежность, необходимую для долговечного динамического преобразователя мощности.

Несмотря на наличие движущихся компонентов, эти машины с циклом Стирлинга достигли долгого срока службы за счет устранения механизмов износа и использования передовых многоцикловых компонентов и жаропрочных материалов. Подшипники изгиба используются в ВМТ для подвешивания движущихся компонентов без какого-либо контакта, сохраняя при этом уплотнение с малым зазором между поршнем и цилиндром. Разработчики спроектировали изгибы, которые испытывают многоцикловые колебательные напряжения, чтобы иметь усталостный ресурс, намного превышающий требуемый срок службы устройства.Высокотемпературные материалы также рассчитаны на необходимый срок службы.

Удар

Многие миссии, в которых используется RPS, путешествуют во внешние районы Солнечной системы и, таким образом, имеют большую продолжительность миссии — в некоторых случаях до 17 лет. Любой преобразователь мощности, интегрированный в RPS, должен работать непрерывно в течение всей миссии. Эта долгосрочная демонстрация надежности динамического преобразователя мощности является критическим шагом в реализации улучшенного RPS. Доступные в настоящее время варианты RPS используют энергию радиоизотопного топлива с КПД примерно 6%.RPS на основе Стирлинга может повысить эту эффективность до 20% или выше, значительно увеличив мощность, которую научные и исследовательские миссии НАСА могут получить от ограниченных запасов плутония-238 в США. RPS на основе Стирлинга также имеет потенциал для значительного увеличения удельной мощности генератора, что могло бы позволить новый класс научных миссий за счет соединения RPS с электрической силовой установкой.

Статус и планы на будущее

Непрерывная выработка энергии двумя ВМТ в течение более 11 лет свидетельствует о том, что на динамическое преобразование мощности можно положиться при освоении космоса.Чтобы убедиться, что эти преобразователи имеют минимальный износ или его отсутствие, одно из блоков ВМТ на 103 000 часов будет разобрано для проверки. Другой блок продолжит работу для поддержки оценки надежности преобразователей Стирлинга со свободным поршнем на изгиб. PSD в настоящее время изучает несколько различных динамических преобразователей, чтобы разработать прочный и надежный генератор радиоизотопов для поддержки будущих миссий. Данные этой долгосрочной демонстрации TDC предоставят ценную информацию относительно потенциального использования преобразователей Стирлинга в будущем летном оборудовании.

Спонсорская организация

Программа

PSD Radioisotope Power Systems спонсирует эти усилия по развитию технологий.

Подробнее Технологические истории

,

Тепловой КПД — Простая английская Википедия, бесплатная энциклопедия

Тепловой КПД (ηth {\ displaystyle \ eta _ {th} \,}) — это безразмерный показатель производительности теплового устройства, такого как двигатель внутреннего сгорания, котел, или печь, например.

Вход Qin {\ displaystyle Q_ {in} \,} на устройство — это тепло или теплосодержание потребляемого топлива. Желаемый результат — это механическая работа, Wout {\ displaystyle W_ {out} \,} или тепло, Qout {\ displaystyle Q_ {out} \,}, или, возможно, и то, и другое.Поскольку входящее тепло обычно имеет реальные финансовые затраты, запоминающееся общее определение термического КПД: [1]

ηth≡OutputInput. {\ Displaystyle \ eta _ {th} \ Equiv {\ frac {\ text {Output }}{\ввод текста}}}.}

Согласно первому и второму законам термодинамики выходной сигнал не может превышать входной сигнал, поэтому

0≤ηth≤1.0. {\ Displaystyle 0 \ leq \ eta _ {th} \ leq 1.0.}

Термический КПД, выраженный в процентах, должен находиться в пределах от 0% до 100%.Из-за неэффективности, такой как трение, потеря тепла и других факторов, термический КПД обычно намного меньше 100%. Например, типичный бензиновый автомобильный двигатель работает с тепловым КПД около 25%, а большая угольная электростанция достигает пика около 36%. Тепловой КПД электростанции с комбинированным циклом приближается к 60%.

При преобразовании тепловой энергии в механическую, термический КПД теплового двигателя — это процент энергии, преобразованной в работу.Термический КПД определяется как

ηth≡WoutQin {\ displaystyle \ eta _ {th} \ Equiv {\ frac {W_ {out}} {Q_ {in}}}},

или через первый закон термодинамики, чтобы заменить отвод отработанного тепла для произведенной работы,

ηth = 1 − QoutQin {\ displaystyle \ eta _ {th} = 1 — {\ frac {Q_ {out}} {Q_ {in}}}}.

Например, когда 1000 джоулей тепловой энергии преобразуется в 300 джоулей механической энергии (а оставшиеся 700 джоулей рассеиваются как отходящее тепло), тепловой КПД составляет 30%.

Для устройства преобразования энергии, такого как котел или печь, тепловой КПД равен

ηth≡QoutQin {\ displaystyle \ eta _ {th} \ Equiv {\ frac {Q_ {out}} {Q_ {in}}}}.

Таким образом, для котла, который производит 210 кВт (или 700 000 БТЕ / ч) на каждые 300 кВт (или 1 000 000 БТЕ / ч) вводимого теплового эквивалента, его тепловой КПД составляет 210/300 = 0,70, или 70%. Это означает, что 30% энергии теряется в окружающей среде.

Электрический резистивный нагреватель имеет тепловой КПД около 100% или около него, поэтому, например, 1500 Вт тепла вырабатывается на 1500 Вт входной электроэнергии.При сравнении нагревательных элементов, таких как электрический резистивный нагреватель с КПД 100% и топкой на природном газе с КПД 80%, необходимо сравнивать цены на энергию, чтобы найти более низкую стоимость.

Тепловые насосы, холодильники и кондиционеры, например, перемещают тепло, а не преобразовывают его, поэтому для описания их тепловых характеристик необходимы другие меры. Общие меры — это коэффициент полезного действия (COP), коэффициент энергоэффективности (EER) и коэффициент сезонной энергоэффективности (SEER).

КПД теплового насоса (HP) и холодильников (R) *:

EHP = | QH || W | {\ displaystyle E_ {HP} = {\ frac {| Q_ {H} |} {| W |}}}

ER = | QL || W | {\ displaystyle E_ {R} = {\ frac {| Q_ {L} |} {| W |}}}

EHP − ER = 1 {\ displaystyle \ displaystyle E_ {HP} -E_ {R} = 1}

Если температуры на обоих концах теплового насоса или холодильника постоянны, а их процессы обратимы:

EHP = THTH-TL {\ displaystyle E_ {HP} = {\ frac {T_ {H}} {T_ {H} -T_ {L}}}}

ER = TLTH-TL {\ displaystyle E_ {R} = {\ frac {T_ {L}} {T_ {H} -T_ {L}}}}

 * H = высокая (температура / источник тепла), L = низкая (температура / источник тепла)
 

«Тепловой КПД» иногда называют КПД .В Соединенных Штатах в повседневном использовании SEER является более распространенным показателем энергоэффективности для охлаждающих устройств, а также для тепловых насосов в режиме нагрева. Для нагревательных устройств с преобразованием энергии часто указывается их пиковая стационарная тепловая эффективность, например, «эта печь эффективна на 90%», но более подробным показателем сезонной энергоэффективности является годовая эффективность использования топлива (AFUE). [2]

  1. Основы инженерной термодинамики , Хауэлл и Бакиус, МакГроу-Хилл, Нью-Йорк, 1987
  2. ↑ HVAC Systems and Equipment volume of ASHRAE Handbook , ASHRAE, Inc., Атланта, Джорджия, США, 2004 г.

.

Отправить ответ

avatar
  Подписаться  
Уведомление о