Какая должна быть плотность у аккумулятора: Как определить, что аккумулятор пора менять

Содержание

Как определить, что аккумулятор пора менять


У каждой аккумуляторной батареи есть свой конструктивный ресурс. Его использование индивидуально для каждого автомобиля. Безотказность работы батареи зависит от технических показателей электрооборудования, режима и условий эксплуатации машины. Отказ аккумулятора в работе может наступить по причине низкой заряженности, при которой ее работоспособность недостаточна для пуска двигателя. Необходимо отметить, что именно в этом режиме работы большинство водителей оценивают ее пригодность. Но при наступлении отказа приговаривать батарею к замене следует только после тщательной проверки ее показателей -замера плотности электролита, наличия его над пластинами, замера напряжения на полюсных выводах аккумулятора без нагрузки и с нагрузкой (на нагрузочную вилку-пробник, либо на стенде). Если плотность электролита во всех ячейках аккумулятора нормальная или близка к норме (1,25-1,28 г/см3), а НРЦ не ниже 12,5 В, то необходимо проверить на обрыв цепи внутри аккумулятора. Если обрыва нет, значит отказ в пуске двигателя произошел по другим причинам (например, из-за стартера или проводки). При низкой плотности электролита во всех ячейках батарею следует зарядить до стабилизации плотности. Время заряда будет зависеть от величины тока, а значение плотности электролита у заряженной батареи при нормальном уровне электролита должно быть 1,27±0,01 г/см3, а НРЦ не менее 12,7 В.


Проверку заряженной аккумуляторной батареи можно осуществить в режиме пуска двигателя (в сервисных центрах «ВК» проверка проводится специализированным оборудованием). Если аккумуляторная батарея работоспособна (уверенно крутит стартер), менять ее рано. Когда измерение плотности электролита показало, что в одной из ячеек она очень низкая, а при подзаряде в этой ячейке нет «кипения» электролита, и его плотность не повышается, аккумулятор следует менять. При малом сроке эксплуатации такое возможно из-за заводского дефекта, а по истечении более 2-3 лет работы — вследствие естественного износа. Одновременно все шесть аккумуляторов в АКБ достигают состояния низкой работоспособности (кроме глубокого разряда) при длительной работе в режиме избыточного заряда (перезаряда). Это происходит при нарушении работы регулятора напряжения, а также при высокой интенсивности использования автомобиля (режим «такси»). В этом состоянии изношенные электроды обладают повышенным сопротивлением в режиме пуска (при наличии нормальной плотности электролита), напряжение аккумулятора резко снижается за одну-две попытки пуска двигателя, после чего наступает отказ. Электролит в ячейках аккумулятора приобретает темный (иногда красноватый) цвет, связанный с разрушением активного вещества пластин. Такую аккумуляторную батарею необходимо менять. Сложнее проводить диагностику батарей, не имеющих пробок заливных горловин. При отказе измерение напряжения на полюсных выводах аккумулятор (НРЦ) не дает ответа о причинах его снижения: глубокий разряд или дефект.


Поэтому аккумуляторную батарею надо сначала зарядить. Если заряд возможен в режиме инструкции по эксплуатации, а напряжение в конце заряда достигло величины 16,0 В, аккумулятор проверяют на автомобиле в режиме пуска двигателя. Возможна также проверка специализированным оборудованием в сервисном центре «ВК» (например, ВАТ 110 фирмы Bosch). По результатам испытания принимают решение о пригодности аккумуляторной батареи для ее дальнейшего использования.

Появление льда в ячейках аккумулятора


У свинцовых аккумуляторов два жестко фиксированных состояния: разряженное и заряженное. При переходе от одного состояния в другое, показатели напряжения и плотности электролита линейно изменяются в определенных пределах (Рис.1). Напряжение на полюсных выводах аккумулятора (НРЦ) в заряженном состоянии составляет 12,7-12,9 В, а в разряженном — 12 В и ниже. При неисправностях электрооборудования автомобиля несанкционированный разряд может приводить к тому, что напряжение на полюсных выводах может оказаться ниже 6 В.


При разряде активных материалов с участием серной кислоты на электродах образуется сульфат свинца, концентрация электролита уменьшается, вследствие чего происходит снижение его плотности. Чем глубже происходит разряд аккумулятора, тем ниже плотность электролита. В электроды конструктивно заложено такое количество активного материала, которое необходимо для обеспечения заданных электрических характеристик аккумулятора. Соответственно, в объеме электролита содержится количество серной кислоты, необходимое для полного использования в реакции активного вещества пластин.


Так что в конце полного разряда аккумулятора серной кислоты в электролите очень мало. В конце глубокого разряда плотность электролита достигает значения близкого к плотности воды. Известно, что электролит плотностью 1,28 г/см3 замерзает при температуре -65°С, плотностью 1,20 г/см3 — при -25°С, а плотностью 1,10 г/см3 — при -5°С (рис. 1).


Изготовители аккумуляторов считают недопустимым использовать в зимнее время аккумулятор с заряженностью ниже 75% (плотность электролита 1,24 г/см3, НРЦ — 12,6 В). Это продиктовано необходимостью поддержания работоспособности аккумулятора, исключения возможности появления льда внутри нее, уменьшения вредного влияния глубокого разряда при зимней эксплуатации на ресурс аккумулятора, связанного с разрушением активной массы пластин. Получается, что если произошло замерзание аккумулятора (лед во всех ячейках), значит она разрядилась в процессе работы ниже допустимого значения (нет контроля плотности электролита, неисправно электрооборудование, снизилась мощность генератора — причин много). Бывают случаи, когда замерзает только одна ячейка из шести. Это возможно, когда у аккумулятора дефект (короткое замыкание) в одной ячейке, из-за которого в ней снижается плотность электролита и он застывает при низкой температуре окружающего воздуха. При этом в других ячейках аккумулятора электролит может не застыть, так как его плотность осталась нормальной. Этот случай образования льда вызван производственным дефектом и относится к гарантийным случаям, а не к режиму эксплуатации.


Такую аккумуляторную батарею не следует эксплуатировать — она подлежит вскрытию для установления дефекта и замене. Зимой доливать дистиллированную воду в аккумуляторе для восстановления уровня электролита над блоками пластин следует только перед выездом автомобиля, либо при стационарном подзаряде аккумулятора. Это исключает возможность образования льда в ячейках аккумулятора вследствие замерзания долитой воды до того, как она успеет перемешаться с холодным электролитом.

О причинах взрыва аккумулятора


У свинцовых стартерных аккумуляторных батарей, применяемых на автомобильной и тракторной технике различных типов, есть одна малоизвестная неприятная особенность, которую обязательно необходимо учитывать при эксплуатации. Дело в том, что в процессе заряда на его заключительной стадии, в батарее начинается электролитическое разложение воды, содержащейся в электролите. При этом выделяются газы: водород и кислород. Часть выделяемого кислорода окисляет решетку положительных пластин, что приводит к ускорению ее коррозии. Водород и большая часть выделившегося кислорода выходят из электролита на поверхность, создавая видимость его кипения, и скапливаются под крышками в каждой ячейке аккумуляторной батареи. Если отверстия в пробках не забиты грязью и нет других препятствий, через них эта смесь газов выходит наружу и легко рассеивается в окружающую среду. Соотношение кислорода и водорода таково, что представляет собой смесь, которая при наличии искры или открытого пламени горит во взрывном режиме. Сила взрыва и его последствия целиком зависят от количества (объема) газа, скопившегося к этому моменту. Например, при повышенном значении зарядного напряжения от генератора (нарушена работа регулятора напряжения) увеличивается интенсивность образования газа внутри аккумуляторной батареи и, следовательно, его выделение. При низком уровне электролита (нет регулярных доливок) увеличивается газовый объем под крышками ячеек аккумулятора.


Скоплению газа около аккумуляторной батареи может способствовать утепление, применяемое некоторыми водителями, забывающими при этом о необходимости свободного удаления газовой смеси.


В таком состоянии (режиме работы) появление искры от неисправной электропроводки либо открытого огня (сигареты) опасно для аккумуляторной батареи — происходит взрыв и ее разрушение. Детали аккумулятора при разрушении могут причинить повреждения окружающим предметам и людям. Возникновение искры возможно также от проводов в местах их соединения с полюсными выводами аккумуляторной батареи. Если длительное время полюсные выводы аккумулятора и внутренняя поверхность наконечников не очищались от окислов, нарушается нормальный электрический контакт, возможно образование искр.


Образование искры возможно также между деталями внутри аккумулятора, когда уровень электролита ниже верхних кромок пластин.


Таким образом, нарушение техники безопасности и режима обслуживания аккумулятора, длительная эксплуатация батареи на автомобилях с отклонениями технических показателей у изделий электрооборудования, служат причинами скопления выделяющегося «гремучего» газа и провоцируют возникновение взрыва, приводящего к разрушению корпуса свинцовых стартерных аккумуляторных батарей. Такой взрыв может причинить вред человеку.

Эксплуатация, зарядка, хранение аккумуляторной батареи

23.12.2019

Содержание


1. Техническое отступление

2.Основные характеристики аккумуляторных батарей


2.1. Расход воды

2.2. Долговечность батареи

2.3. Рекомендации по эксплуатации


3. Терминология

4. Маркировка АКБ

5. Выбор и покупка АКБ

6. Установка АКБ

7. Рекомендации по эксплуатации и обслуживанию


7.1. Обслуживание АКБ в процессе эксплуатации

7.2. Продление жизни новой батарее

7.3. Зарядка аккумулятора зарядным устройством


8. Особенности эксплуатации АКБ в зимний период


8.1. Прикуривание от другого автомобиля


9. Особенности эксплуатации АКБ в летний период

10. Вопросы безопасности

11. Хранение аккумуляторной батареи

12. Приложения


12.1. Реанимация аккумулятора

12.2. Ещё несколько способов, основанных на использовании электрического тока

Скрыть содержание

1. Техническое отступление

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском — одному богу известно… Можно загубить компьютер.
Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.

Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности отрицательно заряженной пластины и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — диоксида свинца. Одновременно с этим повышается плотность электролита.
Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см. рис.1).

Каждая банка является законченным источником питания напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток. Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6-12.8 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — диоксид свинца.
Вес залитой АКБ ёмкостью 55 Ач составляет около 16.5 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.

2. Основные характеристики аккумуляторных батарей

2.0. Электродвижущая сила (ЭДС)

Зависимость ЭДС (грубо говоря, напряжение на выводах аккумулятора) от плотности электролита выглядит так:

Е = 6 * (0,84 + р) , где Е — ЭДС аккумулятора , (В) р — приведенная к температуре 5°С плотность электролита , г/мл

2. 1. Расход воды

Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения.

На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита. В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %.

Панацею от этой беды фирмы видят в освоении т.н. гибридной технологии — замене сурьмы в одной из пластин на кальций. Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток. А потому разложения воды не происходит и уровень электролита остается неизменным.

Преимущества «кальциевых» АКБ — можно устанавливать в местах , не не требующих удобного доступа для обслуживания. Меньше вероятность выхода из строя из-за коррозии решеток электродов. Лучшие стартерные характеристики.

Недостаток «кальциевых» АКБ — при глубоких разрядах происходит образование нерастворимых солей кальция, и емкость АКБ необратимо теряется. Производители АКБ пытаются устранить этот недостаток добавлением в АКБ серебра и др. компонентов, результат пока окончательно не ясен.

2.2. Долговечность батареи

Средний срок службы современных АКБ при условии соблюдения правил эксплуатации — а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.

Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1. 12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда. (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу, же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности, ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.

Не менее опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород, и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Ну а если его нет? В этом случае также можно довольно просто оценить зарядное напряжение. Для этого запустите и прогрейте двигатель, установив средние обороты и подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14±0.5В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Впрочем, точно также вина ложится на регулятор, если напряжение превышает 14. 5В.

В последнее время широкое распространение получили сепараторы карманного типа — т.н. конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Такая конструкция увеличивает срок службы батареи, так как осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.

2.3. Рекомендации по эксплуатации

Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд. На графиках рис.2,3 показаны характеризующие саморазряд величины для различных батарей. В первом случае — это снижение плотности от времени хранения, во втором — падение напряжения.

Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение — 12.5 В. О степени разряженности батареи судят по плотности электролита. Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%. Используя график (см. рис.4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее, позволим повторить ее еще раз — батарею, разряженную летом более чем на 50%, а зимой более чем на 25%, необходимо снять с автомобиля и зарядить. При этом следует помнить, что пониженная плотность зимой более опасна, т.к. кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С.
Также необходимо подзарядить батарею, если плотность в разных банках отличается более чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от ее ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2. 75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (т.н. «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.
Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом.

Первоначально, используя график (рис.4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее).
Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:

Тут следует отметить, что не вся энергия идет на повышение ёмкости. КПД процесса составляет 60-80%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы. Потому реальное время увеличивается примерно в полтора раза от расчетного (что и учитывается коэффициентом «1.5» в формуле).

Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.

Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся тем, что зарядка идет при постоянном напряжении, но автоматически изменяющемся в зависимости от степени заряженности батареи токе. При этом зарядное устройство перестает давать ток, если батарея полностью заряжена. Принцип, используемый в подобных устройствах аналогичен зарядке от генератора на автомобиле.

Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1. 25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину

Таким образом, примерное время зарядки

Каждодневным способом зарядки батареи является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы.
Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея начинает принимать заряд только после прогрева электролита до положительной температуры, что при эксплуатации в зимних условиях происходит примерно через час после начала движения. Именно этим и опасен довольно распространенный, по крайней мере, в нашем автомобильном городе, способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату. Из этого следует, что зимой необходимо проверять состояние АКБ и своевременно подзаряжать ее регулярно
Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0. 83 Ач, что составляет около 1.5% от ёмкости аккумулятора.
При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.
Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.
Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.
Батарея начинает принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20°С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же. )
Коэффициент полезного действия процесса зарядки составляет примерно 50%.
Каждый автомобильный генератор характеризуется следующими показателями:
ток отдачи генератора при работе двигателя на холостом ходу.
ток отдачи генератора при работе двигателя на номинальных оборотах.
Для ВАЗовских автомобилей эти цифры имеют следующие значения:

Таблица 1

Модель автомобиля…………………..2101-2106……2108-2109……2110

ток отдачи на холостом ходу…………….16………………24…………..35

ток отдачи на номинальных оборотах 42……………….55…………..80

Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.

И наконец, примерное потребление энергии автомобильными потребителями:

Таблица 2

потребитель……….ток, А (приблизительно)

зажигание. …………….2

габариты……………….4

ближний свет…………9

дальний свет………..12

обогрев стекла……10-11

стеклоподьемник…20-30

вентилятор отопителя:

1-я скорость…………5-7

2-я скорость……….10-11

стеклоочистители…3-5

магнитола…………….5

ИТОГО……………….38-48

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются заряженными далеко не на 100%).

Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору (при этом помните про КПД зарядки, составляющий 50%).

Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее, чем у отечественных автомобилей.

Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты проводимых в ГДР исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1Ач в час

3. Терминология

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.

Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Каждая банка имеет газоотвод, конструкции которого могут существенно отличаться.

Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3 при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.

Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.

Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 14.0-14.2 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что одинаково пагубно сказывается на ее сроке службы.

Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.

Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0. 05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.

Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.

Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов. Сепараторы карманного типа без каких-либо других дополнений увеличивают напряжение батареи на 0.3В, одновременно улучшая стартовые характеристики. Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.

Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.

Корпус современных АКБ изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита.

Необслуживаемые батареи. Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.

Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

4. Маркировка АКБ

На современные аккумуляторные батареи наносится следующая маркировка:

Некоторые батареи имеют такую маркировку:

Несмотря на то, что после ёмкости стоит значение 280А, цифра, интересующая нас и показывающая ток холодного старта по принятому у нас стандарту DIN равна 255А.
Обозначения основных характеристик на батареях различных производителей отличаются друг от друга. Большинство европейских производителей и значительная их часть в Азии руководствуются промышленным стандартом Германии DIN 43539 часть 2, который оговаривает два основных параметра: ёмкость батареи, измеряемую в ампер-часах (Ач) при +25°С, и ток стартерного разряда в амперах (А) при -18°С.
Батареи американских производителей испытываются по требованию американского стандарта SAE J537g, который включен в международный стандарт BCI и также вводит два основных параметра: резервную ёмкость, измеряемую в минутах при +27°С, и ток холодной прокрутки — в амперах при -18С. Стандарт SAE не предусматривает измерение ёмкости батареи в ампер-часах.
Первый рассматривает способность батареи к длительным разрядам меньшими токами, второй — разряд большими токами, но за меньший отрезок времени.
Пересчет значения тока стартерного разряда по европейскому стандарту DIN в ток холодной прокрутки по американскому стандарту SAE может производиться с помощью экспериментальных коэффициентов. Для батарей ёмкостью до 90Ач используется коэффициент 1.7, т. е. ISAE = 1.7 IDIN. Для батарей ёмкостью от 90 до 200 Ач используется коэффициент 1.6, т. е. ISAE = 1.6 IDIN.
В настоящее время в Европе наряду с немецким стандартом DIN введен новый единый стандарт En — 60095-1/93.
Кроме того, на необслуживаемых батареях проставляется соответствующая надпись. Чаще всего на русском, английском или немецком языке (либо на языке производителя, как например, на испанских батареях «Tudor»).

5. Выбор и покупка АКБ

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.

Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу.

Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы, как батареи, так и стартера.

Очень неплохо знать рекомендуемую величину пускового тока для Вашего автомобиля. На многих (японских) автомобилях устанавливаются стартёры с редуктором. Это позволяет существенно уменьшить величину пускового тока, а значит существенно продлить жизнь Вашего аккумулятора.

Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.

Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.

Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор. Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.

Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.

В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации.

Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.

6. Установка АКБ

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать Литолом-24. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.

Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.

Батарея должна стоять на своём месте жёстко. Болтание её в крепёжных элементах недопустимо. Дополнительная вибрация скажется на долговечности батареи. Замыкание и осыпание пластин в банках чаще всего происходят именно из-за вибрации.

Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

7. Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание, ненадежное крепление батареи способны сильно сократить срок ее службы.

При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).

Генератор (при холостых оборотах двигателя) не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных. Зимой ситуация усугубляется. К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.

Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

7.1. Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования, крепления батареи. Необходимо также следить за правильным натяжением ремня генератора, очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства.

Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

7.2. Продление жизни новой батарее

Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.

На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора. Необходимо, чтобы эта величина поддерживалась не ниже 75%.

справка:

Установлено, что отклонение регулируемого напряжения на 10…12% вверх или вниз от оптимального сокращает срок службы батареи в 2…2.5 раза.

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с пол-оборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

справка:

Сокращение времени работы стартера вдвое при шести-восьми ежедневных пусках повышает срок службы аккумуляторной батареи приблизительно в 1.5 раза.

Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. Это одно из важнейших условий. В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

справка:

Несвоевременная доливка в аккумуляторы дистиллированной воды может снизить срок службы батареи на 30%.

Эти простые советы, продлят жизнь АКБ.

Кроме этого, специалисты советуют при наличии зарядного устройства при любой возможности (например, на ночь) ставить аккумуляторную батарею на подзарядку малым током — около 1…2А. Для этого можно АКБ не снимать с автомобиля. Только эта операция, если ее проделывать регулярно, не реже одного раза в месяц, увеличивает срок службы батареи, по крайней мере, на год.

7.3. Зарядка аккумулятора зарядным устройством

Ну а теперь как заряжать? Зарядные устройства бывают с ручной и автоматической регулировкой (Орион PW-270, Орион PW-320) или автоматические (все остальные зарядные устройства Орион). Перед зарядкой необходимо открыть все газовые каналы: вывернуть пробки, снять крышки банок.

При зарядке важны три параметра: напряжение, ток зарядки и время. Когда аккумулятор частично процентов на 25 разряжен, то начальный ток заряда при включении выпрямителя может резко скакнуть вверх. Отрегулируйте его на зарядный ток около 1/10 ёмкости аккумулятора или меньше (это общепринятое правило заряда кислотных батарей). Т.е., если у Вас батарея имеет маркировку 55Ah — выставляем ток около 5.5А.

Если необходимо зарядить батарею в кратчайшее время, можно выставить и больший ток. В соответствии с законом Вудбриджа который гласит: сила зарядного тока (в амперах) не должна превышать величину заряда (в ампер-часах), недостающего до полной ёмкости акуммулятора. При этом зарядное устройство должно автоматически снижать ток при повышении напряжения или выключаться при достижении порогового напряжения на батарее. В противном случае (если ЗУ этого не делает) необходимо непрерывно контролировать зарядный ток и напряжение в ручную.

Далее в процессе зарядки напряжение будет расти, а ток уменьшаться. Считается, если ток не уменьшается в течение последних 2-3 часов, то аккумулятор заряжен. Важно помнить, что нельзя вести заряд большим током более 25 часов. Электролит сильно нагреется и выкипит, пластины от нагрева может повести и они замкнут друг на друга. Обычно нормальное время полного заряда около 15 часов.

Иногда необходимо выровнять плотность небольшим током. Например, если плотность электролита в разных банках 1.23, 1.25. Включив зарядное устройство, устанавливаем ток зарядки порядка 1-2А. Данное значение у разных АКБ- разное и зависит от многих факторов: конструкции, пассивационного материала пластин, состояния батареи и т.д. Время такой зарядки до двух суток. Особенно это необходимо делать после того, как аккумулятор разряжен в ноль бесплодными попытками завести двигатель. При чём, делать это надо сразу, пока не началась сульфатация пластин.

Батареи, исключающие долив воды, должны заряжаться только устройствами с автоматическим поддержанием зарядного напряжения. Несоблюдение этого условия приведет к снижению их срока службы. Конкретные требования по режиму заряда, эксплуатации и обслуживанию должны быть изложены в инструкции или гарантийном талоне, прилагаемом к батареям.

В настоящее время разные производители обозначают разное напряжение окончания заряда. Как правило, оно составляет от 15 до 16В (для батарей устаревших конструкций, с применением в качестве пассивирующего материала сурьмы — меньше). На самом деле, порог ограничения напряжения автоматического зарядного устройства 15 или 16 вольт (для батареи с прописанными, для полного заряда, 16ю вольтами, например Varta) влияет только на время заряда последних 2-4% емкости.

Для доведения уровня электролита до нормы недопустимо использовать электролит! В аккумуляторную батарею доливают только дистиллированную воду. Не используйте воду сомнительного происхождения. При частом выкипании проверьте электрооборудование автомобиля.

Необходимо знать, что при сильном снижении уровня электролита внутри корпуса аккумулятора может образоваться опасная концентрация газовой смеси. Чтобы исключить вероятность взрыва, нельзя подносить к батарее открытое пламя (даже сигарету) и допускать искрение электроконтактов. Системы газоотвода некоторых современных батарей более взрывобезопасны. В средней полосе России АКБ не требуют корректировки плотности электролита при смене сезонов.

Перед зимней эксплуатацией автомобиля сделайте обслуживание не только аккумуляторной батареи (см. выше), но и систем, влияющих на запуск двигателя. Обязательно залейте моторное масло, соответствующее сезону. Для облегчения запуска двигателя в сильные морозы занесите батарею на несколько часов в теплое помещение.

Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.

Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. Плотность электролита разряженного аккумулятора может снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения – электролит плотностью 1.28 г/см3 замерзает при t=-65°С.

Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.

Для борьбы с паразитными токами утечки введите себе привычку вытирать корпус батареи насухо от всякой нечисти. Если совсем в лом, то хотя бы делайте чистый круг вокруг плюсовой клеммы, чтобы разорвать паразитные электрические связи. Ну, а если Вы любите свою машину, то разведите немного соды в воде и протрите всю поверхность корпуса батареи и вытрете ее насухо. Все тряпки, которые прикасались к аккумулятору выбросить немедленно! А заодно проверите крепление батареи, уровень электролита и его плотность. Времени это займёт минут 10-15, а сэкономить может часы и кучу нервов.

8. Особенности эксплуатации АКБ в зимний период

Перво-наперво замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так? Значит, снимаем батарею и ставим на зарядку. И это однозначно! Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.

Далее. Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага. С другой стороны силовых проводов так же провести ревизию контактов.

8.1. Прикуривание от другого автомобиля

Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Не забываем, что по этим проводам у нас потечёт около 200 ампер!

На что нужно обратить внимание при покупке:
1. Толщина жилы медного провода. Сняв изоляцию с крокодила (зажима) можно увидеть саму жилу. Чем толще, тем лучше. Не обращайте внимание на толщину кабеля. Главное проводник тока, а не толщина изоляции.
2. Надежность крепления жилы к крокодилу провода прикуривателя. Медная жила д.б. облужена, затем обжата и припаяна. Если эти условия соблюдены, то потерь в месте соединения будет меньше. Все стартовые провода Орион 100% паяются.
3. Изоляция. Лучший вариант — морозоустойчивая резина или силикон. Зимой такие провода остануться эластичными.
4. Длинна проводов. Провода по длинне нужно выбирать не длинее, чем нужно.
5. Крокодилы (зажимы). При покупке обращайте внимание на толщину стали из которой они сделаны и силу пружины, а не габаритные размеры.
Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.
1. Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.
2. Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.
3. Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.
4. Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т. п. В момент подсоединения будьте готовы к небольшой искре.
5. Следите, чтобы оба кабеля не касались движущихся деталей.
6. Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении. Если не заведется повторите попытку через 2-3 минуты.
7. При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

8.2 Запуск машины при помощи предпускового зарядного устройства Вымпел. Подключаете устройство, выставляете максимальный ток 18А, оживляете акумулятор в течении 10-15 мин. Затем не отключая зарядного устройства пробуете завести. Если не получилось повторяете попытку заново.

9. Особенности эксплуатации АКБ в летний период

Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод. Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.

Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом, из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита). Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.

Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется, и открываются пластины. А дальше все, как описано выше.

Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банках и на разных уровнях. Это может произойти после доливки большого количества воды. Чтобы избежать неприятностей, зарядите аккумулятор или проедьте на машине, чтобы плотность раствора сравнялась. Есть еще один совет: доливайте дистиллированную воду в аккумулятор при работающем двигателе. Это обеспечит ее перемешивание с кислотой.

Ускорение электролиза способствует уплотнению активной массы. Этой “болезнью” страдают отрицательные пластины, активная масса которых во время эксплуатации постепенно уплотняется, а ее пористость уменьшается. Доступ электролита внутрь отрицательных пластин затрудняется, что снижает ёмкость батареи. К тому же уплотнение активной массы может сопровождаться образованием трещин и отслаиванием.

Пластины коробятся при увеличении силы зарядного тока, при коротком замыкании, понижении уровня электролита, частом и продолжительном включении стартера, когда батарея нагружается разрядным током большой силы. Чаще короблению подвержены положительные пластины, при этом в их активной массе образуются трещины, и она (активная масса) начинает выпадать из решеток.

Причиной выпадения активной массы из решеток пластин может стать длительная перезарядка, плохое крепление пластин, вибрация и т.д. Осыпающийся активный слой в конце-концов замыкает пластины, сокращает мощность и срок службы. В современных аккумуляторах пластины помещаются в конверт-сепараторы; осадок выпадает, но короткого замыкания удается избежать.

Летом вентиляционные отверстия забиваются пылью. Чтобы батарея не лопнула и не взорвалась следите за чистотой аккумулятора. Пробки заливных отверстий должны быть плотно закрыты.

Как сохранить свой аккумулятор летом?

Во-первых, следите за уровнем электролита и регулярно доливайте дистиллированную воду. Во-вторых, не оставляйте батарею незаряженной. В-третьих, следите за чистотой корпуса. В-четвертых, следите за состоянием электрической системы автомобиля. Неисправный стартер и генератор совершенно незаметно “подготовят” батарею к зиме и с первыми морозами она откажет.

Если вы планируете заменить аккумулятор, лучше не ждать до осени. В сезон выбор значительно меньше, цены выше, а желающих больше. В любом случае потребуется помощь подготовленного продавца-консультанта. Летом он сможет больше уделить вам времени.

10. Вопросы безопасности

Помните, что опасность возгорания кислорода и водорода, выделяющихся во время зарядки (а также после ее завершения), вполне реальна.

Хотя большинство серьезных производителей оборудуют крышки аккумуляторов ограничителями пламени, призванными предотвратить его попадание внутрь аккумулятора, подобная вероятность по-прежнему сохраняется.

Помните также, что искра возникает не только при отсоединении клеммы. Статического электричества от синтетической одежды может оказаться достаточно, чтобы вызвать взрыв.

Взрыв аккумулятора можно сравнить по мощности с выстрелом из ружья калибра 12мм. Результат представляет собой жуткое зрелище, и происходит это чаще, чем вы можете себе представить. При том, что взрыв, вероятно, не будет смертельным, он может серьезно травмировать вас, особенно лицо, так как осколки пластика разлетаются во все стороны. Поэтому всегда следует быть в защитных очках.

Если вдруг позарез понадобилось отсоединить аккумулятор на машине с работающим мотором (лучше, конечно, не подвергать свой автомобиль таким испытаниям), прежде надо включить как можно больше потребителей электроэнергии: печку, фары, противотуманки, «дворники». Если этого не сделать, то может сгореть регулятор напряжения, а следом откажет электрооборудование и в том числе — системы управления двигателем. А для начала загляните в инструкции: позволяет ли она вообще производить такую операцию. Ведь на автомобилях некоторых марок, напичканных современной аппаратурой, любое отключение аккумулятора выводит из строя сложные электронные системы.

11. Хранение аккумуляторной батареи

1.снимите аккумулятор с машины (оставьте на машине со снятыми клеммами), очистите от грязи, полностью зарядите.

2.при отсутствии возможности подзарядки во время хранения АКБ можно рекомендовать следующий способ. Электролит в аккумуляторе необходимо заменить 5-процентным раствором борной кислоты. Перед заменой электролита АКБ полностью заряжают, а затем сливают электролит в течение 15 минут. Затем ее сразу же промывают дважды дистиллированной водой, выдерживая воду по 20 минут. После промывки наливают раствор борной кислоты, заворачивают пробки с открытыми вентиляционными отверстиями, вытирают батарею и ставят на хранение. Саморазряд аккумуляторов с раствором борной кислоты практически отсутствует.

Справка

Для приготовления 5-процентного раствора борной кислоты необходимо в 1 литре дистиллированной воды, нагретой до 50. ..60°С, растворить 50г борной кислоты. Раствор заливают в аккумуляторы при температуре 20…30°С.

Хранить батарею надо при температуре не ниже 0°С, поскольку заливаемый 5-процентный раствор борной кислоты может замерзнуть. А для ввода такой батареи в действие из нее выливают раствор борной кислоты в течение 15…20 минут и сразу же заливают сернокислый электролит плотностью 1.38…1.40 г/см3 для нашей зоны. После 40-минутной пропитки пластин электролитом АКБ можно устанавливать на автомобиль, если плотность электролита не уменьшилась ниже 1.24…1.25 г/см3. Если она стала ниже, следует откорректировать плотность отбором слабого раствора и добавлением электролита плотностью 1.40 г/см

12. Приложения

12.1. Реанимация аккумулятора

Реанимация аккумулятора. Старый фирменный аккумулятор может послужить еще, если его правильно восстановить! Итак, начнём. Имеем на руках убитый или почти убитый аккумулятор.

Нам понадобятся некоторые материалы и инструменты:

1) Свежий электролит (номинальной + желательно повышенной плотности)

2) Дистиллированная вода.

3) Измеритель плотности электролита (ареометр). Например ареометр производства НПП «Орион CПб»

4) Зарядное устройство, способное обеспечить малые (0.05-0.4А) токи зарядки.
5) Маленькая клизма (простите, надо!) и пипетка для наливных целей.
6) Нагрузочная вилка. НПП «Орион СПб» производит 4 модели: от простых и дешевых НВ-01, НВ-02, до профессиональных НВ-03, НВ-04.

Для начала определимся с возможными неисправностями:
1) Засульфатированность пластин — ёмкость аккумулятора падает почти до нуля.
2) Разрушение угольных пластин — при зарядке электролит становится черным.
3) Замыкание пластин — электролит в одной из секций аккумулятора выкипает, секция греется. (Тяжелый случай, но иногда небезнадежный)
4) Перемёрзший аккумулятор — распухшие бока, электролит при заряде сразу вскипает (многочисленные замыкания пластин) — тут уж ничем не помочь, аминь, упокой Господь его душу!

Начнем с конца списка. (п.3) При замыкании пластин ни в коем случае не пытайтесь его заряжать! Начинаем промывку дистиллированной водой. Не бойтесь переворачивать и трясти аккумулятор, хуже уже не будет. Промывайте его до тех пор, пока не перестанет вымываться угольная крошка (надеюсь, этот момент наступит, иначе прекратите этот мазохизм). При промывке часто замыкание пластин устраняется, и мы переходим от пункта (3) к пункту (2). После промывки и вытряхивания всякого мусора из недр аккумулятора приступаем к пункту (1), а именно к устранению отложений солей на пластинах аккумулятора. Следуйте инструкциям к присадке. Мой опыт может отличаться от того, что вы прочтёте в инструкции. Далее я делаю так:

1) Заливаем аккумулятор электролитом номинальной плотности (1.28 г/см3).

2) Добавляем присадку, исходя из объёма аккумулятора (см. инструкцию)

3) Даём электролиту выдавить воздух из секций, а присадке — раствориться в течении 48 часов (!), при необходимости доливаем электролит до номинального уровня. Кстати, присадку можно растворить в электролите до заливки в аккумулятор, если, конечно, она хорошо растворяется.

4) Подключаем зарядное устройство (не забудьте снять пробки!). НО МЫ НЕ БУДЕМ ЕГО ЗАРЯЖАТЬ! НЕ СЕЙЧАС! Сначала мы будем гонять его по циклу «зарядка-разрядка», иначе «тренировка», то есть заряжать и разряжать его, пока не восстановится нормальная ёмкость. Выставляем ток зарядки в районе 0.1- 0.2 А и следим за напряжением на клеммах. Не давайте электролиту кипеть или нагреться! Если необходимо, уменьшите зарядный ток, пузырьки газа и перегрев разрушают аккумулятор! Заряжайте, пока напряжение на клеммах аккумулятора не достигнет 2.3 — 2.4В на каждую секцию, т.е. для 12-вольтового аккумулятора — 13.8-14.4 В.

5) Уменьшаем зарядный ток вдвое и продолжаем зарядку. Зарядку аккумулятора прекращаем, если в течении 2 часов плотность электролита и напряжение на клеммах остаются неизменными.

6) Доводим плотность до номинальной доливкой электролита повышенной плотности (1.4) или дистиллированной воды.

7) Разряжаем аккумулятор через лампочку током примерно в 0. 5А до падения напряжения на клеммах до 1.7В на элемент. Для 12-вольтового аккумулятора эта величина составит 10.2В, для 6-вольтового 5.1 соответственно. Из имеющихся величин тока разряда и времени разряда вычисляем ёмкость нашего аккумулятора. Если она ниже номинальной (4 ампер-часа), то:
 Повторяем цикл заряда с начала до тех пор, пока ёмкость аккумулятора не приблизится к номинальной.

9) Добавляем в электролит ещё немного присадки и закрываем отверстия аккумулятора. ВСЁ!!! Мы имеем на руках рабочий аккумулятор, который, иногда способен проработать дольше китайского!

Дальше обращаемся с аккумулятором, как положено.

12.2. Ещё несколько способов, основанных на использовании электрического тока.

Способ первый — простой. Электролит заменить дистиллированной водой и зарядить аккумулятор или батарею очень небольшим (примерно 0.01 ёмкости) током. При этом в банках степень сульфатации снижается и образуется электролит, который заменять не нужно. После двух часов зарядки ее прекращают на такое же время. А затем снова повторяют.

Доказано, что после одного-трех таких циклов степень сульфатации резко снижается.

Второй способ — наиболее трудоемкий, но в безвыходном положении его тоже можно применить. Он химический, включает следующие операции: заряд батареи в течение 2…3 часов, слив электролита из банок, двух-трехкратная их промывка дистиллированной водой, заправка 2.5-процентным (25 г на 1 л) раствором питьевой соды и выдержка в течение 2…3 часов, слив раствора, заправка 2…3-процентным раствором повареной соли, заряд батареи в течение 1ч, слив раствора, промывка 4-процентным раствором питьевой соды, полный (из расчета 150-процентной ёмкости) заряд батареи, третья промывка банок, заправка их электролитом, полный (150-процентной ёмкости) заряд батареи.

Плотность электролита в аккумуляторе — какая должна быть, проверка, как повысить

Свинцово-кислотным аккумуляторам уже более полутора столетий, но позиции в автомобилестроении они не сдают и по сей день. Главных причин тому две: низкая себестоимость и морозоустойчивость. Литий-ионный аккумулятор, пускай он и  гораздо компактнее и легче при сопоставимой с свинцово-кислотным емкости, но стоит в разы дороже и уже при 0° С его емкость упадет вдвое (в то время как у свинцовой батареи это произойдет только при -30° С). И это не говоря уже о гораздо большей требовательности к условиям заряда и разряда.

Необслуживаемые кальциевые и AGM-аккумуляторы завоевывают все большую популярность, но  АКБ традиционной конструкции с возможностью обслуживания все так же можно увидеть под капотом автомобиля. Контроль уровня и состояния электролита  увеличивает ресурс аккумулятора, а самое главное – страхует от проблем зимой, что «рукастому» владельцу только в плюс.

Принцип действия аккумулятора

Говоря о плотности аккумуляторного электролита, нужно начать с самого принципа работы автомобильных аккумуляторов. Во время заряда-разряда в аккумуляторе протекают около 60 реакций, как утверждают исследования еще советских времен,но основной из них является только одна: в процессе разряда оксид свинца на катоде (отрицательном электроде) и свинец на аноде (положительном электроде) «забирают» сульфат-ионы из раствора серной кислоты, превращаясь в сульфат свинца, причем на катоде дополнительно образуется вода, а при заряде сульфат свинца, напротив, «отдает» сульфат-ионы в электролит.

Таким образом, во время разряда плотность электролита падает, при полном разряде между пластинами фактически остается дистиллированная вода, а во время заряда она возрастает. Тогда почему падает плотность раствора в аккумуляторе со временем, если эти процессы зеркальны?

Причина в том, что сульфат свинца, образующийся при разряде аккумуляторной батареи, не всегда полностью расходуется в ходе заряда. Особенно это заметно на морозе и после длительного пребывания батареи в разряженном состоянии: пластины покрываются сначала белыми разводами крупнокристаллического сульфата свинца, а затем эти кристаллы постепенно осыпаются вниз и в дальнейшей реакции, проходящей при зарядке, практически не участвуют.

Поэтому сульфатация пластин аккумулятора является однозначно вредным явлением. Снижается емкость аккумулятора, прочность пластин, а из-за падения плотности электролита батарея хуже набирает заряд: чем ниже плотность раствора, тем хуже проводимость. Полностью разряженный аккумулятор практически не принимает заряд – сопротивление электролита между его пластинами слишком велико.

Однако плотность может со временем и вырастать. Так как электролит – это не чистая серная кислота, а ее водный раствор, то при зарядке АКБ протекает еще одна реакция: банальный электролиз воды, малозаметный в начале цикла, но к концу идущий по нарастающей. Поэтому старые рекомендации по заряду обслуживаемых АКБ советовали дождаться «кипения» аккумулятора – резкого роста выделения кислорода и водорода в банках. Теряя воду, со временем электролит снизит свой уровень, а плотность его неизбежно возрастет – даже с учетом постепенного связывания серной кислоты на пластинах и в осыпи вода при «кипении» теряется быстрее.

Нормальная плотность электролита

Чистая серная кислота в аккумуляторах не используется – это чрезмерно опасно, значительно возрастает скорость сульфатации пластин даже при нормальной эксплуатации. Из эксплуатационных соображений плотность электролита аккумулятора выбрана такой, чтобы обеспечить возможность уверенной работы при отрицательных температурах, достаточную удельную емкость и скорость заряда.

При нормальных условиях (под которыми в физике принято понимать, среди прочего, температуру +20° С) плотность электролита в полностью заряженном аккумуляторе составляет 1,28-1,3 г/см3. Как можно видеть на приведенной иллюстрации, именно такая плотность обеспечивает наибольшую морозоустойчивость. Заодно заметно, что у полностью разряженного аккумулятора риск замерзания зимой очень велик – достаточно температуре опуститься ниже -5, как в электролите образовываются кристаллики льда.

Зимняя и летняя плотность электролита

Однако на практике измерение плотности электролита в аккумуляторе при строго заданной температуре невозможно: зимой в гараже плотность у исправного и заряженного аккумулятора увеличится, а летом, да еще и сразу после поездки, напротив, будет ниже. Поэтому принята система поправок при измерениях в зависимости от температуры аккумулятора, которая отображена в таблице ниже. :

Температура электролита, °С Поправка, г/см3
От –40 до –26 –0,04
От –25 до –11 –0,03
От –10 до +4 –0,02
От +5 до +19 –0,01
От +20 до +30 0,00
От +31 до +45 0,01

Таким образом, если Вы измеряете плотность зимой во время легкого заморозка (до -10), то у заряженного аккумулятора она должна составлять 1,3-1,32 г/см3, так как с поправкой -0,02 мы и получим «стандартные» 1,28-1,3. На жаре же уже нормой плотности  будут 1,27-1,29 г/см3.

Ещё кое-что полезное для Вас:

Порядок измерения плотности аккумулятора

Для начала аккумулятор необходимо установить на ровную горизонтальную плоскость и очистить  крышку от пыли и грязи. Лучше для этого использовать ткань, смоченную слабым раствором соды, как самой доступной щелочи: она нейтрализует возможное отпотевание электролита вокруг пробок.

Теперь проверяем уровень электролита. Проще это сделать на аккумуляторах с полупрозрачными стенками – на стенках есть риски, с помощью которых можно сразу понять, находится ли уровень в пределах допустимого. Важна не только сама высота уровня, но и равномерность по банкам: там, где уровень электролита заметно меньше, возможна неисправность (негерметичность стенок или днища, быстрое «выкипание» электролита из-за его чрезмерной изначальной плотности и так далее). Если стенки у аккумулятора непрозрачные, воспользуйтесь прозрачной трубкой, опуская ее в отверстия пробок до упора в набор пластин и затыкая после этого верхний конец пальцем: вытащив трубку, Вы увидите, насколько электролит выше пластин. Нормой считается высота уровня в 10-15 мм над пластинами.

Если в какой-то банке уровень электролита ниже нормы, доведите его до нужного,  аккуратно доливая дистиллированную воду. Как мы уже писали выше, чаще всего уровень снижается из-за потери воды за счет электролиза, поэтому восполнять уровень готовым электролитом нельзя.

Перед проверкой плотности обеспечьте батарее состояние стопроцентной заряженности – подсоедините зарядное устройство до момента «кипения» или до его отключения, если используете автоматическую модель. Это нужно и для того, чтобы плотность в банке выровнялась после доливания дистиллированной воды, иначе измерение даст ошибочный результат.

Распространенный прибор для контроля плотности – это ареометр, представляющий собой прозрачную колбу с грушей для набора жидкости. Внутри этой колбы находится грузик с делениями – в набранный электролит он погрузится на высоту, зависящую от плотности аккумулятора, и риска, по которую он погрузится, и укажет на результат измерения.

Однако есть и более удобный и универсальный прибор – речь идет об оптическом рефрактометре, который способен также измерять температуру замерзания охлаждающей жидкости и «омывайки». Для измерения достаточно капнуть на нужное место из пипетки и прижать каплю прозрачным стеклом-крышкой. Посмотрев на свет через рефрактометр, вы увидите по риске плотность электролита. Это быстрее, да и точнее, чем привычный способ с ареометром.

Как повысить или понизить плотность в аккумуляторе

Как поднять плотность электролита в аккумуляторе или, наоборот, понизить ее, если измерения показали, что она выходит за пределы нормы? Сразу предупредим: придется повозиться.

Для начала нужно запастись электролитом повышенной (и заранее известной!) плотности. Для удобства возьмем электролит с плотностью 1,4 г/см3 – он достаточно безопасен при работе. Далее необходимо узнать, каков объем одной банки аккумулятора, полностью слив ее в стеклянную градуированную емкость. Отнимая некоторое количество электролита и доливая заранее запасенный «крепкий» (или, наоборот, дистиллированную воду), можно соответствующим образом довести плотность до необходимой. Ориентируйтесь на следующую таблицу для объема в 1 литр:

Измеренная плотность Отбор электролита, мл Доливка электролита, мл Доливка воды, мл
1,24 252 256  
1,25 215 220  
1,26 177 180  
1,27 122 126  
1,28 63 65  
1,29      
1,30 36   38

В результате вы получите 1 литр электролита с плотностью 1,29 г/см3 – эта величина находится ровно посреди допуска.

Приведем пример: из банки слилось 0,8 литра раствора с плотностью 1,24 г/см3. Из простейшей пропорции можно вычислить, что нам нужно отлить 201 мл из этого объема и добавить 204 мл «крепкого» электролита. Почему различаются объем доливки и удаляемый объем? Любой бывалый самогонщик подскажет: раствор серной кислоты в воде, как и в случае со спиртом, меняет свой объем в зависимости от процентного соотношения компонентов, и 100 мл кислоты в смеси со 100 мл воды дадут отнюдь не 200 мл раствора.

Можно ли избежать этой возни? Естественно. Раз уж вам приходится сливать электролит из банки, то гораздо быстрее сразу залить туда свежий электролит нормальной плотности. Не помешает и промыть перед этим его дистиллированной водой: это лишний плюс для ресурса батареи.

Видео: Как правильно поднять плотность электролита в аккумуляторе

Оптимальная плотность электролита! | Статьи компании ООО «KRONVUZ» г Москва


Мы часто сталкиваемся с вопросом об эксплуатации автомобильных аккумуляторов, число автовладельцев возрастает, и, конечно, весь круг автолюбителей знает, что аккумулятор не работает без электролита.
Плотность данного вещества зависит от многих факторов, но принято считать, что оптимальная плотность электролита составляет 1,26 г/см3.


По плотности электролита можно установить, в каком состоянии находится батарея. В том случае, когда АКБ плохо держит заряд, нужно проверить концентрацию жидкости внутри нее. Когда батарея находится в рабочем состоянии, вода постепенно испаряется, что способствует большей концентрации электролита, а это оказывает отрицательное влияние на состояние аккумуляторной батареи.


Отрицательно влияет на АКБ как повышенная, так и пониженная плотность электролита. Излишняя плотность активирует химические процессы, протекающие в батарее постоянно. Из этого следует быстрое разрушение пластин и снижение срока службы аккумулятора.


Единой рекомендации оптимальной плотности электролита не существует, потому что его плотность зависит от критических значений температуры в определенных регионах, для каждого из которых есть свое собственное значение.

  • В условиях Крайнего Севера плотность электролита должна составлять не менее 1,29 г/см3;
  • Для большей части территории РФ приемлем показатель 1,26– 1,27 г/см3;
  • В теплых районах нормальная плотность составляет 1,23–1,25 г/см3;
  • Минимальным значением является показатель 1,23 г/см3.


Опираясь на эту статистику, можно расценивать показатель 1,26 г/см3 как оптимальный. При заливке электролита готовить раствор рекомендуется, опираясь на минимальный показатель данных диапазонов, а для щелочного аккумулятора плотность содержимого должна составлять около 1,2 г/см3.


Прибор для измерения плотности электролита называется денсиметр. Выполнить проверку плотности можно и с помощью вольтметра.


К каждой АКБ прилагается инструкция по эксплуатации, в которой описаны материалы АКБ, технология изготовления АКБ, а также, к какой категории относится данная АКБ.


Аккумуляторные батареи бывают обслуживаемыми, малообслуживаемыми (на протяжении длительного времени не требующие доливки воды) и необслуживаемые.


К сожалению, не всегда удается уследить за состоянием акб и вовремя его обслуживать. Если жидкость в аккумуляторе поменяла цвет, это значит, что упала плотность и необходимо слить и заменить электролит.


Более подробно узнать информацию об электролите и его замене можно в статье «Замена электролита в аккумуляторе».


Наша компания производит целый ряд устройств для обслуживания аккумуляторных батарей и контроля электролита. Вся продукция производства предприятия «KRONVUZ» выполнена по высоким технологиям, что способствует бесперебойной эксплуатации длительное время.


Рекомендуем ознакомиться со следующими материалами:

Как проверить АКБ автомобиля, как проверить автомобильный аккумулятор на работоспособность

Проверка аккумулятора автомобиля – необходимость, с которой часто сталкиваются автовладельцы. Это можно сделать в автосервисах, доверив диагностику специалистам, и самостоятельно специальными приборами или подручными средствами.

Этапы диагностики

Алгоритм как проверить аккумулятор автомобиля на работоспособность :

  • визуальная диагностика;
  • контроль уровня электролита;
  • контроль напряжения;
  • исследование с помощью нагрузочной вилки;
  • определение плотности электролита в банках;
  • проверка объема АКБ.

Визуальный осмотр

Специалисты рекомендуют проводить внешний осмотр аккумулятора при каждом открытии капота. Корпус должен быть целым, а крепление клемм надежным.

В процессе эксплуатации на поверхности прибора скапливаются грязь, влага, подтеки от кипящего электролита. Клеммы должны быть чистыми — их окисление в совокупности с внешними загрязнениями приводит к росту риска глубокого разряда, который сокращает срок службы прибора.

Как проверить аккумулятор на наличие саморазряда: подключите вольтметр к клемме, другим проведите по поверхности аккумулятора. Если был разряд, проведите чистку — уберите остатки электролита раствором пищевой соды. Зачистите клеммы наждачной бумаги.

Проверка уровня электролита

Для диагностики аккумулятора используется стеклянная уровневая трубка с делениями. Нормальный уровень электролита – 10-12 мм выше пластин.

Состояние аккумулятора проверяется так:

  • трубку вводят в заливное отверстие;
  • аккуратно продвигают до соприкосновения с сеткой сепаратора;
  • затыкают отверстие пальцем;
  • вытаскивают трубку.

Уровень жидкости в трубке соответствует уровню электролита в аккумуляторе.

Из-за снижения уровня электролита открываются свинцовые пластины и окисляются, что сокращает срок службы прибора. Восстанавливают уровень дистиллированной водой.

Также обращайте внимание на прозрачность жидкости. Если цвет электролита темный, значит он с примесями окислов. Это снижает способность держать зарядку.

Измерение напряжения

Измерение напряжения – важный этап в диагностике АКБ . Проверять его нужно мультиметром. Это недорогой прибор, который в электронной версии стоит приобрести каждому автовладельцу.

Как проверить заряд аккумулятора автомобиля мультиметром:

  • перевести прибор в режим измерения постоянного напряжения;
  • установить диапазон выше стандартных максимальных значений;
  • черный щуп мультиметра подключить на минус АКБ;
  • красный щуп подключить на плюс;
  • зафиксировать показания.

Стандартный уровень напряжения аккумулятора – 12,6 вольт. Если оно ниже, требуется зарядка аккумулятора.

С помощью мультиметра также моно проверить АКБ на замыкание. Для этого подсоедините щупы к выходам полностью заряженной батареи. Если показания меньше 10,7 вольт, одна из банок вышла из строя.

Проверка нагрузочной вилкой

Проверка с помощью нагрузочной вилки (прибора, создающего нагрузку аналогичную, возникающую при работающем двигателе) позволяет выявить работоспособность аккумулятора и оценить его состояние.

Этапы диагностики:

  • подключите клеммы контрольного прибора к выходам АКБ;
  • если показания ниже 12,6 -1 2,9 вольт, зарядите аккумулятор;
  • подайте нагрузку на 5 секунд;
  • зафиксируйте показания.

Нормальное напряжение – свыше 10,2 вольт. Показания около 9 вольт говорят, что батарея изношена. Если напряжение ниже 9 вольт, требуется замена аккумулятора.

Проверка плотности электролита

Проверка плотности проводится ареометром. Для этого трубку помещают в заливное отверстие и откачивают часть жидкости. Электролит нужно проверять в каждой банке. Рекомендуем проводить проверку при температуре 20-30 °C., тогда стандартными показателями будут 1.27 – 1.29. При повышенной плотности долейте дистиллированную воду. Если плотность снижена, добавьте раствор электролита (можно добавить жидкость из банки с нормальной либо повышенной плотностью).

Низкая плотность электролита зимнее время можем привести к замерзанию жидкости и, как следствие, деформации корпуса или трещинам.

Повышенная плотность станет причиной преждевременной коррозии элементов аккумулятора, и выведет батарею из строя.

Проверка емкости АКБ

Емкость автомобильного аккумулятора всегда указывается в сопроводительных документах. В процессе эксплуатации показатель уменьшается, что приводит к потере мощностью и снижению эксплуатационных характеристик.

Проверить реальную емкость автомобильного аккумулятора можно контрольным разрядом: АКБ полностью заряжают, разряжают, замеряют время до окончания заряда и по формуле высчитывают емкость:

Е [А*час]=I[А]*T[час] .

Если реальная емкость отличается от номинальной на 70% и больше, АКБ нужно срочно заменить.

Общие советы:

  1. Поверхность батареи должна быть чистой, своевременно удаляйте следы масла, подтеки электролита, механические загрязнения
  2. Регулярно заряжайте батарею
  3. Проверяйте уровень электролита, особенно в летнее время
  4. Контролируйте и корректируйте плотность электролита в банках аккумулятора

Эти простые меры позволят вам продлить срок эксплуатации прибора и избежать возникновения нештатных ситуаций.

Хотите обновить машины? Посмотрите онлайн каталог новых и б/у авто в салоне «FAVORIT MOTRS». Мы показываем полную информацию о машине с пробегом до осмотра и тест-драйва в личном кабинете. Забронируйте бесплатно до 3 машин и приезжайте на осмотр в наши автосалоны в Москве. Бронь доступна для всех жителей России.

Оцените наш сервис и подберите себе хорошую машину по доступной цене!


Плотность электролита в аккумуляторе: какая должна быть, как проверить, как поднять

Бортовая сеть автотранспортного средства объединяет в себе источники и потребители электроэнергии. АКБ и генератор выступают энергоисточниками, тогда как вторая группа включает в себя целый комплекс устройств и агрегатов. Среди них первостепенное значение имеют система зажигания и запуска, контрольно-измерительные приборы, сигнализация, лампы в фарах и габаритных огнях.

В электросети автомобиля также присутствует множество дополнительных приспособлений, обеспечивающих комфорт и безопасность водителя и пассажиров. К ним относятся подогрев стёкол и сидений, акустическая система, прикуриватель, GPS-навигатор, видеорегистратор и т.д.

В случае аварийного выхода из строя генератора или реле контроля напряжения именно аккумулятор берёт на себя поддержание работоспособности всех электропотребителей, сохраняя возможность безопасного передвижения автотранспорта до ближайшей станции техобслуживания. Также он стабилизирует напряжение в системе, когда двигатель длительное время работает на низких оборотах или холостом ходу, как это часто бывает при передвижении в городской черте.

На современном рынке автотоваров наибольшим потребительским спросом пользуется свинцово-кислотный АКБ, который нашёл самое широкое применение в транспортных средствах из-за своей надёжности, функциональности и высокой удельной мощности. Главными конструктивными элементами такого устройства являются шесть секций или попросту «банок», внутри которых находится блок свинцовых пластин.

Активной массой положительного электрода является диоксид свинца, а отрицательного – чистый свинец. Между ними расположены сепараторы, основное назначение которых заключается в разделении полублоков разной полярности и препятствии возникновению самозамыканий. Все электрохимические реакции протекают в водном растворе серной кислоты – электролите. Когда батарея разряжается, его плотность снижается из-за активного расхода кислотного агента и выделения молекул воды. При заряде происходит обратный процесс.

Когда следует проверять плотность электролита в АКБ?

Эксплуатация стартерной батареи должна сопровождаться систематическим мониторингом её состояния даже при безотказном и уверенном функционировании. Это связано с тем, что снижение резервного уровня электролита из-за утечки раствора или испарения воды приводит к увеличению кислотной концентрации. Данный фактор негативно сказывается на работоспособности и продолжительности эксплуатации АКБ.

Опытные автомеханики рекомендуют проверять техническое состояние аккумулятора каждые 15-20 тыс. км пробега. Также диагностику целесообразно провести, если он постоянно недозаряжается, плохо держит заряд или туго крутит стартер. Для этого необходимо:

  • визуально осмотреть корпус на наличие трещин и подтёков;
  • оценить уровень электролитической жидкости в банках, который должен возвышаться над верхним краем пластин на 1.2-1.4 см;
  • измерить её плотность с помощью контрольно-измерительного прибора.

Нередко сниженный заряд может быть следствием ослабления ремня привода генератора. Поэтому автомобилисту нужно периодически проверять его натяжение и при необходимости производить регулировку, следуя инструкции по эксплуатации ТС.

Оптимальные показатели электролитической среды

Физико-химическое состояние электролита находится в прямой зависимости от двух параметров – это температура окружающей среды и степень заряженности АКБ. При повышении температурного порога возрастает удельный вес кислоты, а при понижении — падает. Поэтому перед проведением контрольно-измерительных мероприятий аккумулятор рекомендуется выдержать в течение нескольких часов при температуре +20-25 ℃.

Типовые климатические условия региона также оказывают непосредственное влияние на плотность электролитического раствора. Так, в районах с умеренным климатом ρ= 1.27-1.28 г/см3 соответствует 100% заряда, величина 1.21 г/см3 говорит о его снижении до 60%, а 1.18 г/см3 сигнализирует о необходимости подзарядки. Измерения производятся при нормальном уровне реагента над пластинами.

В северных регионах оптимальной считается плотность электролита, равная 1.29-1.30 г/см3, а в субтропическом поясе – 1.23-1.25 г/см3. Измерение данного параметра с целью определения необходимости корректировки производится только у полностью заряженного устройства, иначе полученные результаты будут некорректными.

Алгоритм проверки плотностного состояния электролита

Определение плотности электролита осуществляется при помощи такого приспособления, как ареометр. Перед началом измерительных процедур автовладельцу следует проверить уровень спецжидкости в каждой секции АКБ и при необходимости произвести его корректировку деминерализованной водой. После этого аккумулятор необходимо полностью зарядить и по прошествии 2-3 часов приступать к тесту. Алгоритм его проведения состоит из следующих шагов:

  1. установить устройство на ровную поверхность;
  2. вывернуть пробку заливного отверстия на его крышке;
  3. погрузить в раствор ареометр и втянуть жидкость резиновым наконечником на его противоположном конце;
  4. набрать количество реагента, достаточное для свободного перемещения поплавка;
  5. определить уровень плотности в соответствии с информацией на шкале;
  6. записать результат и повторить манипуляции с оставшимися банками;
  7. сопоставить полученные данные с нормированными значениями.

Значение плотности должно быть одинаковым во всех элементах, допускается отклонение на ±0.01. Если проведённый замер показал понижение плотности в одной из ячеек на 0.10-0.15, то это говорит о наличии дефекта или короткого замыкания между пластинами. Одинаково низкая плотность во всех блоках связана с глубоким разрядом аккумулятора, его сульфатацией или сильным износом, что влечёт за собой падение напряжения в сети и затруднённый пуск ДВС.

У необслуживаемых стартерных батарей есть особый встроенный индикатор. Если он показывает зелёный цвет, то это говорит о 100%-ном заряде АКБ, а чёрный – о необходимости его подзарядки. Бело-жёлтый или красный оттенок обычно соответствуют очень низкому уровню электролита.

Плотность электролита и зимние холода

Данная величина носит относительный характер, поэтому при смене времён года она не должна подвергаться каким-либо изменениям. Автомобилисту нужно лишь следить за тем, чтобы она не отклонялась от рекомендуемого значения, а также производить стабилизацию при обнаружении отклонений.

Производители стартерного оборудования считают недопустимым использование в зимний период устройств с 25%-ной потерей заряда, т.е. плотность электролитической среды которых составляет 1.24 г/см3. Данный факт обусловлен предотвращением возможности обледенения ячеек аккумулятора и снижением вредоносного воздействия глубокого разряда, вызванного саморазрушением активной массы пластин.

Продолжительная эксплуатация аккумулятора с пониженной плотностью в морозы приводит к снижению электродвижущей силы, затруднённому пуску двигателя, образованию льда и разрушению свинцовых пластин. Доливать деминерализованную воду с целью восстановления уровня реагента над блоками следует прямо перед выездом на улицу, либо при стационарной подзарядке батареи. Это исключает вероятность замерзания долитой воды до того, как она успеет перемешаться с холодным электролитом.

Как поднять плотность электролита?

Каждый водитель может своими силами повысить плотность электролита в АКБ автомобиля, не обращаясь к мастерам сервисного центра. Первым делом нужно подготовить необходимые расходные материалы, среди которых деминерализованная вода, аккумуляторная кислота или уже готовый электролитический раствор, а также средства индивидуальной защиты для глаз и кожного покрова. Кроме того, следует обзавестись следующим оборудованием для работы: ареометром, спринцовкой, стеклянной ёмкостью, мерным стаканом и воронкой.

Снятый с автомобиля аккумулятор помещается на устойчивую поверхность, а пробки его заливных отверстий аккуратно откручиваются. Далее максимальный объём реагента выкачивается из банок и сливается в заранее подготовленный резервуар. Набирать нужно как можно больше вещества, измеряя его объём мерным стаканом, чтобы затем долить идентичное количество нового.

Лучше использовать самостоятельно разведённый раствор с плотностью немного выше расчётной для текущего климатического режима. При его приготовлении кислота добавляется в воду, обратный порядок смешения может вызвать серьёзные термические повреждения.

Сперва свежий электролит заполняет только ½ объёма, что был откачан. Затем АКБ нужно слегка встряхнуть из стороны в сторону, чтобы оставшаяся жидкость и новая перемешались. Если после замера плотностное значение не отвечает норме, добавляем ещё половину от оставшегося в ячейке объёма. Действия повторяются до полной стабилизации плотности, остаток доливается деминерализованной водой по уровню.

Как можно заметить из приведённой выше информации, работать с электролитом не представляет особой сложности, если выполнять все манипуляции по инструкции и соблюдать установленные меры предосторожности.

Повышение плотности электролита в АКБ


В холодное время года или после длительного простоя могут появиться проблемы с запуском двигателя. Это происходит из-за севшей АКБ. Длительная зарядка батареи не помогает справиться с этой проблемой, если плотность электролита значительно снизилась.


Почему снижается плотность


Плотность электролита изменяется во время использования аккумулятора. Когда батарея теряет заряд, показатель понижается, и наоборот. Очень низкая плотность электролита связана со следующими причинами:

  • Влияние низких температур в течение длительного времени;
  • Перезаряд АКБ, вследствие чего происходит выкипание электролита;
  • Регулярное добавление воды.


Воду в электролит доливать можно, но перед этим нужно проверять его плотность и не проводить процедуру без необходимости. Делайте замеры в каждой банке. Нормальные значения – от 1,25 до 1, 29. Чем холоднее регион, тем выше должна быть плотность.


Как повысить плотность


Чтобы провести процедуру повышения плотности, следуйте плану.

  1. Зарядите батарею (если АКБ разряжена, то при добавлении раствора, поднимется концентрация серной кислоты – пластины разрушается).
  2. Температура электролита должна быть от 20 до 25 градусов.
  3. Осмотрите аккумулятор: на нем не должно быть дефектов и повреждений, особое внимание уделите токовыводам.
  4. Если уровень в норме (от 1,18) долейте электролит с нормальной плотностью до 1,25.
  5. Выполняйте долив в каждой банке, используя клизму-грушу.
  6. Потрясите аккумулятор, чтобы новый раствор перемешался со старым.


Что делать при минимальной плотности


Если уровень упал ниже 1,18 долив электролита не поможет. Используйте аккумуляторную кислоту − у нее очень высокая плотность (1,84). Заливайте кислоту по описанной выше схеме. Выполняйте процедуру в защитной одежде, перчатках и маске в хорошо проветриваемом помещении или на открытом воздухе. Следите, чтобы кислота не попала на кожу – может появиться ожог.


Повышение плотности зарядным устройством


Повысить плотность электролита можно при помощи слабого тока. Такой способ требует больше времени. 


  1. Полностью зарядите АКБ.
  2. Жидкость начнет выкипать, произойдет испарение дистиллированной воды.
  3. Общий уровень электролита понизится.
  4. Долейте новый электролит необходимой плотности.
  5. Сделайте замеры ареометром.
  6. Если показания недостаточны, повторите процедуру, пока плотность не достигнет 1,25 г/см3.


Не спешите выбрасывать аккумулятор, если машина стала плохо заводиться. Попробуйте восстановить АКБ методом повышения плотности электролита. Это займет немного времени, но продлит жизнь батареи на несколько сезонов и сэкономит деньги.


А чтобы продлить жизнь своему акб, соблюдайте простые правила ухода. Читайте.

Какова плотность энергии у литий-ионной батареи?

Что такое плотность энергии батареи?

Плотность энергии — это мера того, сколько энергии содержит батарея по отношению к ее весу. Это измерение обычно выражается в ватт-часах на килограмм (Втч / кг). Ватт-час — это единица измерения электрической энергии, которая эквивалентна потреблению одного ватта за один час.

Плотность мощности — это мера того, насколько быстро может быть доставлена ​​энергия, а не количество доступной накопленной энергии.Плотность энергии часто путают с плотностью мощности, поэтому важно понимать разницу между ними.

Зачем вам аккумулятор с высокой плотностью энергии?

Чтобы лучше понять литий-ионные батареи, вы должны понять, почему высокая плотность энергии является желательной характеристикой батареи.

Аккумулятор с высокой плотностью энергии имеет большее время работы от аккумулятора по сравнению с размером аккумулятора. В качестве альтернативы аккумулятор с высокой плотностью энергии может выдавать такое же количество энергии, но занимает меньшую площадь по сравнению с аккумулятором с более низкой плотностью энергии.Это значительно расширяет возможности аккумуляторных приложений.

При заводских или складских настройках аккумуляторные батареи для вилочных погрузчиков могут весить тысячи фунтов. Легкий аккумулятор для вилочных погрузчиков дает некоторые преимущества с точки зрения безопасности и обслуживания.

Если плотность энергии батареи слишком высока, это может представлять угрозу безопасности. Когда в ячейку упаковано больше активного материала, это увеличивает риск теплового события.

Какой тип аккумуляторной батареи имеет самую высокую плотность энергии?

Существует несколько разных типов аккумуляторных батарей с различной плотностью энергии, отражающей их внутренний химический состав.

  • Плотность энергии свинцово-кислотных аккумуляторов составляет 30-50 Втч / кг
  • Плотность энергии никель-кадмиевых батарей составляет 45-80 Втч / кг
  • Плотность энергии никель-металлогидридных батарей составляет 60-120 Втч / кг
  • Плотность энергии литий-ионного аккумулятора составляет 50-260 Втч / кг

Типы литий-ионных батарей и их удельная энергия

Литий-ионные батареи часто объединяются в группу батарей, каждая из которых содержит литий, но их химический состав может сильно различаться и, как следствие, разной производительности.

Большинство типов литий-ионных батарей имеют аналогичную конструкцию: катод с алюминиевой подложкой, угольный или графитовый анод с медной подложкой, сепаратор и электролит из литиевой соли в органическом растворителе.

Производители экспериментировали с материалами, используемыми для изготовления катода и анода. Они также изменили состав электролита. Эти различия являются причиной того, что литий-ионные батареи различаются по уровню плотности энергии.

Теперь мы рассмотрим самые популярные химические составы литий-ионных батарей, а также их соответствующие плотности энергии, варианты использования, преимущества и недостатки.

Industry Titans: Литий-титанатные (LTO) батареи

Аккумулятор LTO — один из старейших типов литий-ионных аккумуляторов, у него плотность энергии на нижней стороне, как у литий-ионных аккумуляторов, около 50-80 Втч / кг.

В этих батареях титанат лития используется в аноде вместо углерода, что позволяет электронам входить и выходить из анода быстрее, чем в других типах литий-ионных батарей.

Такая конструкция позволяет батареям LTO заряжаться намного быстрее и безопасно выдерживать большие токи, но низкая плотность энергии делает их плохо подходящими для погрузочно-разгрузочного оборудования.

Они, как правило, дороже и обычно используются для электромобилей, автомобильных аудиосистем и мобильных медицинских устройств.

Высокая энергия, высокий риск: литий-кобальтовые батареи (LCO)

Литий-кобальтооксидные батареи

обладают высокой плотностью энергии 150-200 Втч / кг. Их катод состоит из оксида кобальта с типичным углеродным анодом со слоистой структурой, которая перемещает ионы лития от анода к катоду и обратно.

Эти типы аккумуляторов популярны из-за их высокой плотности энергии и обычно используются в сотовых телефонах, ноутбуках и, в последнее время, в электромобилях.

Кобальт — очень энергоемкий материал, но он может быть дорогим. Поскольку спрос на электромобили возрастает, этот ресурс быстро истощается. Фактически, вскоре мир может столкнуться с нехваткой кобальта.

Кобальт также очень летуч. Литий-кобальтовые батареи не выдерживают больших токов из-за риска перегрева, что представляет собой значительный риск для безопасности.Аккумуляторы LCO имеют более низкую термическую стабильность, а это означает, что они очень чувствительны к более высоким рабочим температурам и перезарядке.

Производительность по цене: литий-никель-марганец-кобальтовые батареи (NMC)

Литий-никель-марганцево-кобальтооксидные батареи

также обладают высокой плотностью энергии 150–220 Втч / кг. Они используют кобальт в катоде так же, как батареи LCO, но они также содержат никель и марганец для повышения стабильности.

Аккумуляторы

NMC используются сегодня в большинстве производимых электромобилей, но также используются в медицинских устройствах и электровелосипедах.

Секрет успеха этой батареи заключается в ее хорошо сбалансированном химическом составе; Никель, как известно, энергоемкий, но нестабильный, как и кобальт, в то время как марганец более стабилен, но также имеет меньшую плотность энергии. Конкретное соотношение различных элементов варьируется в зависимости от производителя, но добавление никеля обычно предназначено для уменьшения количества дорогостоящего кобальта.

Аккумуляторы

NMC могут выдерживать большие токи заряда и больший диапазон температур, чем аккумуляторы LCO.Однако, поскольку батарея по-прежнему содержит кобальт, стоимость возрастает из-за дефицита на рынке.

Доступное, безопасное и надежное: литий-железо-фосфатные батареи (LFP)

Аккумуляторы

LFP обладают высокой плотностью энергии 90–160 Втч / кг. Хотя это меньше, чем у некоторых кобальтовых батарей, он все же остается одним из самых высоких среди всех типов батарей.

В батареях

LFP используется фосфат железа для катода и графитовый электрод в сочетании с металлической подложкой для анода.

Литий-фосфат железа или LiFePO4 — это природный минерал, недорогой, нетоксичный, обладающий хорошей термической стабильностью и высокой плотностью энергии.

Аккумуляторы

LFP идеально подходят для тяжелого оборудования и промышленных сред, поскольку они способны выдерживать большие нагрузки и широкий диапазон температур. Они появились в качестве нового варианта для вилочных погрузчиков и другого тяжелого электрического оборудования, которое требует высокого уровня надежности и исторически использует свинцово-кислотные батареи.

Литий-ионная батарея Тип

Плотность энергии ( Вт ч / кг)

Плюсы

Минусы

Титанат лития (LTO)

50-80

Долговечный, стабильный

Низкая плотность энергии, дороже

Оксид лития-кобальта (LCO)

150-200

Высокая плотность энергии

Неустойчивый и дорогой

Литий-никель-марганец-кобальт оксид (NMC)

150-220

Высокая плотность энергии

Безопаснее, чем LCO, но все же относительно нестабильно и дорого

Литий-железо-фосфат (LFP)

90–160

Средняя-высокая плотность энергии

Стабильный, долговечный и более высокая плотность энергии

Все типы литий-ионных аккумуляторов уникальны. Крайне важно понимать, какой химический состав литий-ионных ионов лучше всего подходит для вашего применения.

Если вы ищете лучший аккумулятор для погрузочно-разгрузочного оборудования, литий-железо-фосфатный аккумулятор, вероятно, станет лучшим выбором. Все блоки Flux Power LiFT сконструированы исключительно с элементами LFP, поскольку они обеспечивают наилучший баланс между безопасностью и производительностью.

Плотность энергии в батареях и ее значение

Плотность энергии — это количество энергии на единицу объема в определенном пространстве.Однако это включает только то количество энергии, к которому мы действительно можем получить доступ. Мы не можем использовать потенциальную энергию валуна, балансирующего на скале, для зарядки наших телефонов. Таким образом, плотность энергии в батареях — это их доступная мощность при полной зарядке, хотя мы выражаем ее в единицах объема.

Дальнейшее увеличение плотности энергии в батареях

Исследование литий-ионных аккумуляторов высокой мощности: Аргонн: Правительство США

Литий-ионные батареи

— лучший химический состав с точки зрения плотности и способности к переработке, а также размера и веса. Эта комбинация открыла двери для новых технологий, включая электромобили, персональные устройства и носимые устройства.

Тем не менее, нам нужно продолжать улучшать их плотность энергии, потому что их время между циклами подзарядки все еще не соответствует нашим требованиям. Нам нужны электромобили с пробегом в тысячу миль и смартфоны, которые прослужат неделю. Но мы также хотим более тонкие и компактные батареи, при этом их цена тоже должна снизиться.

Производители аккумуляторов ищут лучшие решения

Производители аккумуляторов знают, что потребители непостоянны.Мы следим за брендами, у которых лучшая плотность энергии в батареях. Литиевые батареи открыли двери для портативной электроники, аккумуляторных электроинструментов и электротранспорта. Однако их плотность энергии или время между подзарядками остается труднодостижимой проблемой.

Ультраконденсаторы литий-ионных батарей: Министерство энергетики США: Правительство США

Возможно, мы действительно продвинулись в химии литий-ионных ионов настолько далеко, насколько это возможно с точки зрения плотности. Графитовые аноды долговечны, но их способность поглощать больше ионов по-прежнему представляет собой серьезную проблему.Ученые продолжают поиск более эффективных анодных материалов.

Мы сообщили о многообещающих лабораторных экспериментах в наномасштабе. Однако мы не видим серьезных свидетельств коммерческого желания вывести их на рынок. Другой пример — закрытие бензиновых автомобилей. Инвесторы вложили слишком много капитала, чтобы отказаться от нефти.

Связанные

Улучшенная литий-ионная батарея на водной основе

Литий-ионный оксид марганца Долговечность

Изображение для предварительного просмотра: Защита литий-ионных батарей

Мощный литий-ионный аккумулятор на основе кобальта — Battery University

ПРИМЕЧАНИЕ : Эта статья заархивирована .Пожалуйста, прочтите наши новые «Типы литий-ионных аккумуляторов» для получения обновленной версии.


Большинство литий-ионных аккумуляторов для портативных устройств изготовлены на основе кобальта. Система состоит из положительного электрода из оксида кобальта (катода) и угольного графита в отрицательном электроде (аноде). Одним из главных преимуществ кобальтовой батареи является высокая удельная энергия. Длительный срок службы делает этот химический состав привлекательным для мобильных телефонов, ноутбуков и фотоаппаратов.

Широко используемый литий-ионный кобальт имеет недостатки; он обеспечивает относительно низкий ток разряда.Высокая нагрузка может привести к перегреву упаковки и нарушению ее безопасности. Схема безопасности кобальтовой батареи обычно ограничивается скоростью заряда и разряда около 1С. Это означает, что аккумулятор 18650 емкостью 2400 мАч можно заряжать и разряжать только с максимальным током 2,4 А. Еще одним недостатком является увеличение внутреннего сопротивления, которое происходит при езде на велосипеде и старении. После 2–3 лет использования аккумулятор часто выходит из строя из-за большого падения напряжения под нагрузкой, вызванного высоким внутренним сопротивлением. Рисунок 1 иллюстрирует кристаллическую структуру оксида кобальта.
Рис. 1. Катодный кристаллический оксид лития-кобальта имеет «слоистую» структуру . Ионы лития показаны связанными с оксидом кобальта. Во время разряда ионы лития перемещаются от катода к аноду. При зарядке поток меняется на противоположный.
В 1996 году ученым удалось использовать оксид лития-марганца в качестве катодного материала.Это вещество образует трехмерную структуру шпинели, которая улучшает поток ионов между электродами. Высокий поток ионов снижает внутреннее сопротивление и увеличивает нагрузочную способность. Сопротивление остается низким при езде на велосипеде, однако батарея стареет, и общий срок службы такой же, как у кобальта. Шпинель обладает высокой термической стабильностью и требует меньше схем безопасности, чем кобальтовая система. Низкое внутреннее сопротивление ячейки является ключом к высокой производительности. Эта характеристика способствует быстрой зарядке и сильноточной разрядке.Литий-ионный аккумулятор на основе шпинели в элементе 18650 может разряжаться при 20-30 А с минимальным тепловыделением. Допускаются короткие односекундные импульсы нагрузки, в два раза превышающие указанный ток. Невозможно предотвратить некоторое перегревание, и температура ячейки не должна превышать 80 ° C.
Рис. 2: Кристаллический катод из оксида лития-марганца
имеет
«трехмерную каркасную структуру».
Эта структура шпинели, которая обычно состоит из алмазов, соединенных в решетку, появляется после первоначального образования.Эта система обеспечивает высокую проводимость, но более низкую плотность энергии.

Шпинельный аккумулятор тоже имеет слабые места. Одним из наиболее значительных недостатков является меньшая емкость по сравнению с системой на основе кобальта. Spinel обеспечивает примерно 1200 мАч в корпусе 18650, что примерно вдвое меньше, чем у кобальтового эквивалента. Несмотря на это, шпинель по-прежнему обеспечивает плотность энергии примерно на 50% выше, чем у эквивалента на основе никеля.
Рисунок 3: Формат ячейки 18650.
Размеры этой часто используемой ячейки: 18 мм в диаметре и 65 мм в длину.

Типы литий-ионных аккумуляторов

Литий-ионные батареи еще не достигли полной зрелости, и технология постоянно совершенствуется. Анод в современных элементах состоит из смеси графита, а катод — из комбинации лития и других металлов. Следует отметить, что все материалы в батарее имеют теоретическую плотность энергии. Литий-ионный анод хорошо оптимизирован, и в плане конструктивных изменений можно получить небольшие улучшения.Катод, однако, может быть усовершенствован. Поэтому исследования аккумуляторов сосредоточены на материале катода. Другая часть, имеющая потенциал, — это электролит. Электролит служит реакционной средой между анодом и катодом.

В аккумуляторной промышленности увеличивается емкость на 8-10% в год. Ожидается, что эта тенденция сохранится. Это, однако, далеко от закона Мура, который определяет удвоение количества транзисторов на кристалле каждые 18–24 месяца.Перевод этого увеличения на батарею означал бы удвоение емкости каждые два года. Вместо двух лет литий-ионный удвоил свою энергоемкость за 10 лет.

Сегодняшние ионно-литиевые добавки бывают разных видов, и различия в составе в основном связаны с материалом катода. В таблице 1 ниже приведены наиболее часто используемые литий-ионные аккумуляторы на рынке сегодня. Для простоты мы суммируем химический состав в четыре группы: кобальт, марганец, NCM и фосфат.

Химическое название

Материал

Сокращение

Краткая форма

Банкноты

Оксид лития-кобальта 1 Также кобальт лития или литий-ион-кобальт)

LiCoO 2
(60% Co)

LCO

Литий-кобальт

Высокая емкость; для мобильного телефона, ноутбука, камеры

Литий
Оксид марганца
1
Также манганат лития
или литий-ионно-марганцевый

LiMn 2 O 4

LMO

Литий-марганец или шпинель

Самый безопасный; меньшая емкость, чем у литий-кобальта, но высокая удельная мощность и длительный срок службы.

Электроинструменты,
электровелосипедов, электромобили, медицинские, для любителей.

Литий
Фосфат железа
1

LiFePO 4

LFP

Литий-фосфат

Литий-никель-марганцевый оксид кобальта 1 , также оксид лития-марганца-кобальта

LiNiMnCoO 2
(10–20% Co)

NMC

NMC

Литий-никель-кобальт-оксид алюминия 1

LiNiCoAlO 2
9% Co)

NCA

NCA


приобретает все большее значение в сфере хранения электроэнергии и энергоснабжения

Титанат лития 2

Li 4 Ti 5 O 12

LTO

Литий-титанат

Таблица 1: Справочные названия литий-ионных аккумуляторов. При необходимости мы будем использовать краткую форму.

1 Материал катода

2 Материал анода

Литий-ионный аккумулятор на основе кобальта впервые появился в 1991 году и был представлен Sony. Эта химия батарей быстро получила признание из-за высокой плотности энергии. Возможно, из-за более низкой плотности энергии литий-ионный шпинель на основе шпинели стартовал медленнее. Когда они были представлены в 1996 году, мир требовал более длительного времени работы превыше всего. В связи с тем, что многие портативные устройства нуждаются в высоком токе, шпинель теперь находится на передовой и пользуется большим спросом.Требования настолько велики, что производители, производящие эти батареи, не могут удовлетворить их. Это одна из причин, почему так мало рекламы делается для продвижения этого продукта. E-One Moli Energy (Канада) — ведущий производитель литий-ионной шпинели цилиндрической формы. Они специализируются на форматах ячеек 18650 и 26700. Другими крупными игроками на литий-ионных шпинелях являются Sanyo, Panasonic и Sony.


Sony делает упор на никель-кобальтово-марганцевую версию (NCM).Катод включает кобальт, никель и марганец в кристаллическую структуру, которая образует многометаллический оксидный материал, к которому добавлен литий. Производитель предлагает ряд различных продуктов в этом семействе аккумуляторов для пользователей, которым требуется высокая плотность энергии или высокая нагрузочная способность. Следует отметить, что эти два атрибута не могут быть объединены в одном пакете; между ними есть компромисс. Обратите внимание, что NCM заряжается до 4,10 В / элемент, что на 100 мВ ниже, чем для кобальта и шпинели.Зарядка этой аккумуляторной батареи до 4,20 В на элемент обеспечит более высокую емкость, но срок службы будет сокращен. Вместо обычных 800 циклов, достигаемых в лабораторных условиях, количество циклов будет сокращено примерно до 300.

Новейшим дополнением к семейству литий-ионных аккумуляторов является система A123, в которой в катод добавлены нанофосфатные материалы. Он утверждает, что имеет самую высокую удельную мощность в Вт / кг среди имеющихся в продаже литий-ионных аккумуляторов. Элемент может непрерывно разряжаться до 100% глубины разряда при температуре 35 ° C и выдерживать импульсы разряда до 100 ° C.Система на основе фосфата имеет номинальное напряжение около 3,3 В на элемент, а пиковое напряжение заряда составляет 3,60 В. Это ниже, чем у литий-ионной батареи на основе кобальта, и для батареи потребуется специальное зарядное устройство. Valance Technology была первой, кто начал коммерциализацию литий-ионных аккумуляторов на основе фосфатов, и их элементы продаются под маркой Saphionâ.

На рисунке 4 мы сравниваем плотность энергии (Втч / кг) трех литий-ионных химических соединений и сравниваем их с традиционными свинцово-кислотными, никель-кадмиевыми, никель-металлогидридными.Можно увидеть постепенное улучшение марганца и фосфата по сравнению со старыми технологиями. Кобальт обеспечивает самую высокую плотность энергии, но термически менее стабилен и не может обеспечивать высокие токи нагрузки.

Рисунок 4: Плотность энергии обычных батарей.

Определение плотности энергии и плотности мощности

Плотность энергии (Втч / кг) — это показатель того, сколько энергии может удерживать аккумулятор.Чем выше плотность энергии, тем дольше будет время работы. Литий-ионный аккумулятор с кобальтовыми катодами обеспечивает самую высокую плотность энергии. Типичные области применения — сотовые телефоны, ноутбуки и цифровые камеры.
Плотность мощности (Вт / кг) указывает, сколько энергии батарея может выдать по запросу. Основное внимание уделяется скачкам мощности, таким как просверливание тяжелой стали, а не времени работы. Литий-ионные продукты на основе марганца и фосфата, а также химические соединения на основе никеля являются одними из лучших. Батареи с высокой удельной мощностью используются для электроинструментов, медицинских устройств и транспортных систем.

Аналогию между энергией и плотностью мощности можно провести с помощью бутылки с водой. Размер бутылки — это плотность энергии, а отверстие обозначает плотность мощности. Большая бутылка может вместить много воды, в то время как большое отверстие может быстро ее испортить. Лучшая комбинация — большая емкость с широкой горловиной.

Путаница с напряжениями

В течение последних 10 лет или около того было известно, что номинальное напряжение литий-ионного аккумулятора составляет 3,60 В / элемент. Это была довольно удобная цифра, поскольку она составляла три батареи на основе никеля (1.2 В / элемент), подключенных последовательно. Использование более высоких напряжений в ячейке для литий-ионных аккумуляторов приводит к лучшим показаниям ватт / часов на бумаге и дает маркетинговое преимущество, однако производитель оборудования продолжит предполагать, что в ячейке будет 3,60 В.
Номинальное напряжение литий-ионной батареи рассчитывается, если взять полностью заряженную батарею примерно 4,20 В, полностью разрядить ее примерно до 3,00 В со скоростью 0,5 ° C при измерении среднего напряжения.

Из-за более низкого внутреннего сопротивления среднее напряжение шпинельной системы будет выше, чем у эквивалента на основе кобальта.Чистая шпинель имеет самое низкое внутреннее сопротивление, а номинальное напряжение ячейки составляет 3,80 В. Исключение снова составляет литий-ионный аккумулятор на основе фосфата. Эта система максимально отличается от традиционной литий-ионной системы

Продление срока службы батареи за счет модерации

Батареи живут дольше при бережном обращении. Высокое напряжение заряда, чрезмерная скорость заряда и экстремальные условия нагрузки отрицательно сказываются на сроке службы батареи. Долговечность часто является прямым результатом воздействия окружающей среды.Следующие рекомендации предлагают способы продления срока службы батареи.

— Время, в течение которого батарея остается на уровне 4,20 / элемент, должно быть как можно короче. Длительное высокое напряжение способствует коррозии, особенно при повышенных температурах. Шпинель менее чувствительна к высокому напряжению.

-3,92 В / элемент — лучший верхний предел напряжения для литий-ионных аккумуляторов на основе кобальта. Доказано, что зарядка аккумуляторов до этого уровня напряжения увеличивает срок службы вдвое. В литий-ионных системах оборонного назначения используется более низкий порог напряжения.Минус — гораздо меньшая емкость.

— Ток заряда литий-ионных аккумуляторов должен быть умеренным (0,5 ° C для литий-ионных аккумуляторов на основе кобальта). Более низкий ток заряда сокращает время, в течение которого ячейка находится при 4,20 В. Заряд 0,5С лишь незначительно увеличивает время зарядки по сравнению с 1С, потому что дополнительный заряд будет короче. Сильноточный заряд имеет тенденцию преждевременно подталкивать напряжение к пределу напряжения.

— Не разряжайте литий-ионный аккумулятор слишком глубоко. Вместо этого заряжайте его чаще. Литий-ионный не имеет проблем с памятью, как никель-кадмиевые батареи.Для кондиционирования не требуются глубокие разряды.

-Не заряжайте литий-ионные батареи при температуре замерзания или ниже. Несмотря на прием заряда, произойдет необратимое покрытие металлическим литием, что поставит под угрозу безопасность батареи.

Мало того, что литий-ионный аккумулятор работает дольше с более медленной скоростью заряда; также помогает умеренная скорость разряда. На рис. 5 показан срок службы в зависимости от скорости заряда и разряда. Обратите внимание на улучшенные лабораторные характеристики при скорости заряда и разряда 1С по сравнению с 2 и 3С.

Рис. 5. Долговечность литий-ионных аккумуляторов в зависимости от скорости заряда и разряда.
Литий-кобальт обладает самой высокой плотностью энергии. Марганцевые и фосфатные системы более стабильны и обеспечивают более высокие токи нагрузки, чем кобальтовые.

Эксперты по аккумуляторным батареям согласны с тем, что срок службы литий-ионных аккумуляторов сокращается за счет других факторов, кроме скорости заряда и разряда. Несмотря на то, что постепенные улучшения могут быть достигнуты при осторожном использовании, наша среда и необходимые услуги не всегда способствуют оптимальному сроку службы батареи. В этом отношении аккумулятор ведет себя так же, как и мы, люди — мы не всегда можем жить так, чтобы обеспечить максимальный срок службы.

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме.Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «Свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Или перейти к другому архиву

Накопитель энергии

Накопитель энергии

Накопитель энергии
Почему важно хранить энергию 😕

  • Накопленная энергия — это то, что мы сейчас используем Ископаемое топливо
  • Это то, что необходимо для создания альтернативы с низким рабочим циклом
    источники энергии, особенно солнечные.Необходимо хранить
    избыточная энергия при облучении коллекторной системы
  • Накопление энергии также важно для выравнивания мощности для
    энергокомпании Генерирующие станции работают эффективнее
    если они работают на постоянном уровне производительности хотят засунуть неиспользуемые
    энергию в систему хранения и возвращать ее позже в пиковые
    потребность.
  • Накопитель энергии должен учитывать как количество энергии, которое может быть
    запасенная (плотность энергии материала) и эффективность, с которой он
    можно восстановить.Некоторые материалы обладают высокой емкостью хранения энергии, но
    низкая скорость выздоровления.

    Энергетическая плотность некоторых материалов (кВт / кг)
 
  • Бензин ———————— 14
  • Свинцово-кислотные батареи ————— 0,04
  • Гидроаккумуляция ——————— 0,3 (за кубический метр)
  • Маховик, сталь —————— 0,05
  • Маховик, углеродное волокно ———— 0.2
  • Маховик, плавленый кварц ———— 0,9
  • Водород ————————- 38
  • Сжатый воздух ——————— 2 (на кубический метр)

    Классический аргумент против водорода:

    Это просто означает, что водород должен производиться там, где есть
    нет сети, но есть ресурсы (ветер, солнце, волны и т. д.) — ДУХ!

    Хранение плотности энергии определяет выбор, который можно сделать и
    по сути является компромиссом между сохраненной плотностью мощности и сохраненной
    плотность энергии.

    Мощность = энергия x время использования
    поэтому системы с большой плотностью мощности, но
    небольшая плотность энергии означает, что они разряжают свою мощность
    относительно быстро. Системы с большой плотностью накопленной энергии
    обычно означают системы, которые разряжают мощность относительно медленно.

    Только бензин и водород обладают высокой мощностью и большим запасом энергии.
    вместимость.

    Самая известная и используемая система накопления энергии — это химическая батарея:

    Новый класс литий-серных
    батареи выглядят многообещающими

    Hyundai Sonata Гибрид:
    Впервые применил литий-полимерный гибрид

    Prius: очень медленное развитие аккумуляторных технологий

    Chevy Volt: аккумуляторная батарея 16 кВтч, из которых 10.4 кВт / ч является «пригодным для использования» (это предназначено для
    увеличить срок службы батареи). Литий-ионная батарея Задняя часть весит
    Таким образом, накопитель энергии в 435 фунтов (197 кг) составляет 80 Вт · ч на кг (примерно в два раза больше).
    что в NiMH батареях).
    А еще есть настоящая скороварка

    .

    Обратите внимание, что вышеупомянутая реальная проблема задержала Toyota Prius PHEV, которая использует литий-ионный аккумулятор.
    Аккумуляторная батарея

    Рисунок заслуг:

    Самая большая в мире аккумуляторная система хранения энергии
    введено в эксплуатацию в 2003 г. около 14 000
    отдельные батареи могут хранить 40 МВт мощности и разряжаться
    это за 7 минут.

    • Режим 1:40 МВт x 7 минут = 280 МВт-минут энергии
    • 60 минут в час: 280/60 = 4,66 МВтч энергии = 4666 кВтч (примерно на 2 месяца)
      использования энергии для типичного дома.
    • Режим 2: 27 МВт x 15 минут = 405 МВт минут = 6,75 МВтч = 6750 (примерно на 3 месяца)

    Разница между режимами обусловлена ​​фундаментальным свойством большинства аккумуляторов — максимальной разрядкой
    скорость по сравнению со средней скоростью разряда.

    Примечание: при максимальной скорости разряда аккумуляторы сильно нагреваются!

    Его цель — сохранить временное питание, чтобы облегчить кратковременное отключение электроэнергии.
    Общая стоимость этого проекта составила около 30 миллионов, так что это 0,75 доллара за штуку.
    на ватт.

    Батареи Flow:

    Ажиотаж по поводу проточных батарей проистекает из их атрибутов, сочетающих в себе аспекты обычных батарей и топливных элементов. Они относительно
    простой, эффективный, масштабируемый, надежный и может оптимизировать мощность или выходную мощность по желанию.Батареи Flow могут реагировать за доли секунды и могут быстро и глубоко циклически работать с высокой или низкой выходной мощностью с минимальным износом батареи.

    Батареи Flow масштабируются от нескольких ватт и киловатт-часов до десятков или сотен мегаватт и мегаватт-часов.

    Концепция использования больших проточных батарей на ветряных электростанциях, которую вы бы
    думаю будет нетрудно, наконец-то начал завоевывать популярность. Ах!

    Дополнительная литература:

    Подробнее об аккумуляторах Хороший обзор
    Различные типы; преимущества и недостатки и тому подобное.Прочитайте это
    ресурс подробно.

    США Продвинутый
    Консорциум батарей

    Военные
    приложения являются основным драйвером для современных аккумуляторов

    Китай и батареи PLI

  • Плотность энергии в зависимости от плотности мощности

    Плотность энергии — это количество энергии в данной массе (или объеме), а — плотность мощности, — это количество энергии в данной массе. Различие между ними аналогично разнице между энергией и мощностью.Батареи имеют более высокую плотность энергии, чем конденсаторы, но конденсатор имеет более высокую плотность мощности, чем батарея. Эта разница возникает из-за того, что батареи могут хранить больше энергии, но конденсаторы могут отдавать энергию быстрее.

    Плотность энергии

    полная статья

    Если система имеет высокую плотность энергии, она способна хранить много энергии при небольшом количестве массы. Высокая плотность энергии не обязательно означает высокую плотность мощности.Объект с высокой плотностью энергии, но низкой плотностью мощности может выполнять работу в течение относительно длительного периода времени. [1] Примером такого типа накопителя энергии является мобильный телефон. Его энергии хватит на большую часть дня, но для подзарядки устройства его необходимо подключить к другому источнику питания на час и более.

    Рисунок 1. Это демонстрирует взаимосвязь между плотностью энергии и удельной мощностью. Например, топливные элементы будут иметь очень высокую плотность энергии при относительно низкой плотности мощности. [2]

    Плотность мощности

    полная статья

    Если система имеет высокую удельную мощность, она может выдавать большое количество энергии в зависимости от ее массы. Например, крошечный конденсатор может иметь такую ​​же выходную мощность, что и большая батарея. Однако, поскольку конденсатор намного меньше, он имеет более высокую плотность мощности. Поскольку они быстро высвобождают свою энергию, системы с высокой плотностью мощности также могут быстро перезаряжаться. Примером применения этого типа накопителя энергии является вспышка камеры.Он должен быть достаточно маленьким, чтобы поместиться внутри камеры (или мобильного телефона), но иметь достаточно высокую выходную мощность, чтобы осветить объект вашей фотографии. это делает систему с высокой удельной мощностью идеальной.

    Пример

    Чтобы лучше понять плотность энергии, рассмотрим людей, разжигающих огонь в походе. Настал вечер, и пора S’mores, значит, пора развести костер. Естественно, огонь сначала разжигают растопкой. Его высокое отношение площади поверхности к объему означает, что он быстро сгорает — высокая удельная мощность.Как только огонь тухнет, растопка больше не является хорошим выбором топлива, потому что горит слишком быстро. Теперь огонь горит лучше с бревнами, потому что они имеют высокую плотность энергии. Одиночное полено хорошо горит долго.

    Для дальнейшего чтения

    Список литературы

    1. ↑ Б. Э. Лейтон, «Сравнение плотностей энергии преобладающих источников энергии в единицах джоулей на кубический метр», Int. J. Green Energy , т. 5, вып. 6. С. 438-455, декабрь 2008 г.
    2. ↑ «Файл: Таблица литий-ионных конденсаторов.png — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Lithium_Ion_Capacitor_Chart.png. [дата обращения: 13 июля 2018 г.].

    Оптимизация максимальной удельной плотности энергии литий-ионной батареи с использованием метода поверхности с прогрессивным квадратичным откликом и плана экспериментов

    Литий-ионные батареи (LIB) широко используются в качестве перезаряжаемых батарей из-за их высокой теоретической плотности энергии и длительного срока службы. Спрос на LIB большой мощности и емкости резко вырос из-за растущего спроса на электромобили и устройства хранения энергии 1,2,3 .Чтобы удовлетворить эту тенденцию, необходимо повысить плотность энергии LIB. Для этого исследуются и разрабатываются новые электродные материалы. Однако разработка новых электродных материалов требует значительного времени и усилий; поэтому многие исследователи в настоящее время проводят исследования по этому же вопросу.

    Таким образом, одним из способов снижения затрат на исследования и разработки является оптимизация конструктивных параметров существующих электродных материалов, таких как пористость и толщина, для увеличения мощности и емкости LIB 4,5,6,7,8,9 , 10,11,12,13,14,15 .Крайне важно оптимизировать переменные конструкции для достижения целевой производительности, поскольку мощность и емкость имеют компромиссное соотношение. Однако связь между конструктивными параметрами и характеристиками литий-ионных батарей очень нелинейна; поэтому их сложно сконструировать экспериментально. Чтобы преодолеть эти трудности, оптимизация с использованием численных моделей, которые рассматривают электрохимические реакции, используется, что является эффективным методом. Недавние исследования были проведены с целью оптимизации переменных конструкции элементов с использованием численных моделей для разработки батарей большой мощности / большой емкости 4 .

    Ранее Ньюман провел параметрическое исследование, используя график Рагона, чтобы максимизировать удельную плотность энергии батареи 5,6,7,8,9,10,11 . График Рагона — это простой график, который показывает взаимосвязь между удельной энергией и удельной мощностью клетки. Дойл и др. разработал электрохимическую модель для прогнозирования характеристик заряда и разряда батареи с использованием теории пористого электрода и теории концентрированного раствора. Это послужило основой для последующих исследований по оптимизации LIB 5 .Путем параметрического исследования Дойл и Ньюман сравнили удельную плотность энергии ячеек, состоящих из электродов разной толщины, пористости и электролитов, и предложили оптимизированный элемент с использованием графика Рагона 6,7,8 . Сринивасан и Ньюман оптимизировали пористость и толщину положительного электрода для различных значений C-скоростей, сохранив при этом соотношение емкостей двух электродов, толщину и пористость сепаратора, а также пористость отрицательного электрода 9 .Christensen et al. оптимизировали толщину и пористость отрицательных электродов из титаната лития (LTO) для электромобилей и использовали график Рагона для прогнозирования энергетических характеристик 10 . Стюарт и др. улучшен график Рагона с учетом импульсных характеристик гибридного электромобиля (HEV) и оптимизировано удельное отношение мощности к энергии аккумуляторного элемента HEV 11 . Appiah et al. оптимизирована толщина и пористость LiNi 0,6 Co 0,2 ​​ Mn 0.2 O 2 катода посредством параметрического исследования с использованием графика Рагона 12 . Однако получение оптимальных переменных с использованием графика Рагона и параметрического исследования может быть дорогостоящим в вычислительном отношении; поэтому необходимы исследования с использованием методов численной оптимизации.

    Например, Xue et al. отобрали 12 проектных переменных, включая пористость электрода, коэффициент диффузии и различные коэффициенты углерода, и рассчитали градиент с помощью метода комплексной ступенчатой ​​аппроксимации. Затем они оптимизировали удельную плотность энергии, используя методы последовательного квадратичного программирования 13 .Golmon et al. разработала многомасштабную модель батареи, которая дополнительно учитывала микромасштаб, использовала сопутствующий анализ чувствительности для расчета градиента и оптимизировала емкость батареи 14 . Чанхонг Лю и Линь Лю оптимизировали потерю емкости аккумулятора с помощью алгоритма на основе градиента, называемого поиском нескольких начальных точек, и улучшили потерю емкости элемента на 22% 15 . Однако оптимизация на основе градиента — это сложный процесс, требующий различных этапов вычислений и времени.Более того, он чувствителен к числовому шуму, и результаты оптимизации сходятся к локальному оптимуму 16 .

    Чтобы избежать недостатков оптимизации на основе градиента, исследователи изучили множество алгоритмов, которые не требуют вычисления градиента 17,18,19 . Среди них метод поверхности с прогрессивным квадратичным откликом (PQRSM) является одним из методов последовательной приближенной оптимизации (SAO), который можно эффективно применять к нелинейным задачам без вычислений градиента 20 .Кроме того, PQRSM применяет алгоритм доверительной области, который гарантирует слабую глобальную сходимость и имеет низкую вероятность сходимости по локальному оптимуму 21,22,23 . Кроме того, в отличие от параметрического исследования с использованием графика Рагона, которое требует сотен симуляций для анализа одной ячейки, PQRSM требует меньше вычислений для получения оптимальных результатов. Для этих преимуществ PQRSM используется в различных областях техники; однако он никогда не применялся для оптимизации LIB 24,25 .

    В этом исследовании оптимизация максимальной удельной плотности энергии ячейки LIB выполняется с использованием плана экспериментов, PQRSM и электрохимической модели LIB, которая используется для расчета удельной плотности энергии и удельной плотности мощности. Во-первых, был проведен план экспериментов (DOE) для анализа чувствительности восьми факторов конструкции ячейки, включая толщину анода, толщину катода, толщину сепаратора, пористость анода, пористость катода, пористость сепаратора, размер частиц анода и размер частиц катода.Расчетные факторы, чувствительные к удельной плотности энергии и удельной мощности, были выбраны в качестве проектных переменных посредством анализа чувствительности DOE. PQRSM, который гарантирует слабую глобальную сходимость и не требует вычисления градиента, использовался в качестве алгоритма оптимизации для максимизации удельной плотности энергии LIB. После оптимизации различия в удельной плотности энергии и удельной плотности мощности исходной и оптимизированной ячейки сравнивались с помощью разряда постоянного тока.Он подтвердил превосходство оптимизированного результата дизайна.

    Imec удваивает плотность энергии своих твердотельных аккумуляторов

    Поскольку сегодняшняя технология перезаряжаемых аккумуляторов достигла физических пределов возможностей традиционных литий-ионных и литий-полимерных конструкций, исследователи вынуждены искать в других местах, чтобы значительно расширить диапазон электромобилей (электромобилей).

    Твердотельные батареи — это новый вариант. Считается способным к более высокой плотности энергии (2.5X), более быстрая зарядка и большее количество циклов зарядки / разрядки, твердотельные аккумуляторы являются многообещающими кандидатами для устранения внутренних недостатков существующих литий-ионных аккумуляторов, таких как утечка электролита, воспламеняемость и ограниченная плотность энергии.

    Основные преимущества технологии твердотельных аккумуляторов связаны с использованием твердотельных электродов и твердого электролита вместо жидких или полимерных электролитов, содержащихся в литий-ионных или литий-полимерных аккумуляторах.

    На недавно завершившемся саммите European Electric Vehicle Batteries Summit (17-19 июня, Берлин) Imec анонсировала твердотельный литий-металлический аккумулятор с плотностью энергии 400 Втч / литр при скорости зарядки 0.5C (два часа), заявленная как рекордная комбинация для твердотельной батареи. В качестве обзора скорость заряда и разряда аккумулятора регулируется показателем C. Емкость аккумулятора обычно оценивается в 1С, что означает, что полностью заряженный аккумулятор номиналом 1 Ач должен обеспечивать ток 1 А в течение одного часа.

    Твердый нанокомпозитный электролит, разработанный бельгийским центром исследований и разработок, обладает исключительно высокой проводимостью до 10 миллисименс / см (мСм / см) с потенциалом, по словам исследователей, для еще более высокой проводимости.Ключевой особенностью нового материала является то, что он наносится в жидком виде посредством влажного химического покрытия. Только после этого он превращается в твердое тело, когда уже находится в электродах. Таким образом, он хорошо подходит для заливки электродов из плотного порошка, где он заполняет все полости и обеспечивает максимальный контакт, как жидкий электролит.

    Используя твердый нанокомпозитный электролит в сочетании со стандартным литий-железо-фосфатным (LFP) катодом и анодом из металлического лития, Imec удалось удвоить результаты, сообщенные в прошлом году. Он продолжает следовать своей дорожной карте, чтобы к 2024 году достичь плотности более 1000 Втч / литр при скорости зарядки 2–3 ° C (менее получаса).

    Производство в EnergyVille

    Кроме того, Imec объявила, что разработала пилотную линию для производства твердотельных элементов в кампусе EnergyVille (EnergyVille — это результат сотрудничества фламандских партнеров по исследованиям KU Leuven, VITO, Imec и Университета Хассельта в области устойчивого развития. energy) и была основана в Генке, Бельгия, совместно с Университетом Хасселта.Пилотная линия позволяет изготавливать прототипы аккумуляторных батарей емкостью до 5 Ач (см. Рисунок) .

    Пилотная линия по производству твердотельных аккумуляторных элементов, созданная Imec и Университетом Хассельта в кампусе EnergyVille в Генке, Бельгия. (Источник: Imec)

    Завод включает в себя пилотную линию по сборке аккумуляторных батарей площадью 300 м 2 с сухой комнатой 100 м 2 (производство литий-ионных аккумуляторов требует выполнения некоторых технологических операций в сухом помещении, где влажность содержание остается ниже 100 частей на миллион; конструкция и работа такого сухого помещения увеличивает стоимость батареи).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *