Кинематическая схема сцепления: Сцепление — Силовая передача — Практикум по автомобилю

Содержание

Сцепление — Силовая передача — Практикум по автомобилю

14 марта 2011г.

Сцепление служит для отъединения двигателя от силовой передачи при переключении передач и постепенного увеличения крутящего момента, передаваемого от двигателя на колеса при трогании с места.


Схема сцепления

Схема сцепления

Схема сцепления

Продольный разрез (а), кинематическая схема (б) и детали (в) сцепления автомобиля ГАЗ-51А: 1, 3 и 29 — пружины; 2 — кожух; 4 — шайба; 5 — маховик; 6 — первичный (ведущий) вал коробки передач; 7 — подшипник; 8 — винт; 9 — ведомый диск; 10 — картер; 11, 13 и 30 — оси; 12 — нажимной диск; 14 — рычажок; 15 — крышка; 16 — масленка; 17 — маслопровод; 18 — кронштейн; 19 — муфта выключения; 20 — направляющая втулка с фланцем; 21 — пружина; 22 — подшипник; 23 — палец; 24 — чехол; 25 — рычаг выключения; 26 — гайка; 27 — тяга; 28 — вилка; 31 — педаль; 32 — поддон картера; 33 — накладка ведомого диска; 34 — ступица ведомого диска.


Принцип действия сцепления заключается в том, что крутящий момент передается благодаря трению, возникающему между ведущим (шлифованная поверхность маховика 5) и ведомым дисками, сжатыми пружинами 3.

Устройство сцепления. К шлифованной поверхности маховика 5 пружинами 3, действующими через нажимной диск 12, прижимается ведомый диск 9. Для увеличения силы трения к ведомому диску с двух сторон приклепаны накладки 33, имеющие повышенный коэффициент трения по металлу. Ступицей 34 ведомый диск установлен на шлицах первичного вала 6 коробки передач.

Таким образом, при включенном сцеплении крутящий момент от маховика передается ведомому диску и через первичный вал коробки передач к последующим механизмам (агрегатам) силовой передачи.

«Практикум по автомобилю»,
В.П.Беспалько, М.И.Ерецкий, З.В.Розен

Устройство однодискового сцепления | Сцепление

Картер 8 сцепления, обычно отлитый из чугуна, является, как правило, промежуточной деталью между двигателем и коробкой передач, и в нем размещено сцепление. В картере имеются отверстия для установки вала вилки 15 механизма выключения сцепления, для вентиляции сцепления (что необходимо для лучшего отвода теплоты, выделяющейся при пробуксовке дисков), и для доступа к регулировочным устройствам выключающих рычагов. Регулировочные устройства предназначены для установки внутренних концов рычага в одной плоскости во избежание перекоса нажимного диска.

Картер 8 через прокладку 28 и обрезиненный щиток 29 закрывается крышкой 21, в которой установлены пробка 24 со шплинтом и щиток 25 маслосборника.

Кожух сцепления, штампованный из листовой стали, снабжен ребрами жесткости и вентиляционными отверстиями, а также имеет выемки для удерживания пружин 7 от выбрасывания под действием центробежных сил. Отверстия в кожухе для крепления вилок 18 и пальцев 20 выключающих рычагов 16 в некоторых конструкциях сцепления обработаны под сферу для сопряжения с соответствующей сферой регулировочной гайки 17. Кожух своим фланцем крепится болтами 6 и 23 к маховику 2, соединенному с коленчатым валом 1 двигателя. Маховик и нажимной диск 3, являющиеся ведущей частью сцепления, обычно изготавливаются из чугуна и имеют тщательно обработанную торцевую поверхность, соприкасающуюся с поверхностью трения ведомого диска 26.

Противоположная сторона нажимного диска имеет ребра для уменьшения его коробления и лучшего отвода теплоты, приливы для связи с наружными концами выключающих рычагов, которые обычно устанавливаются на осях с помощью игольчатых подшипников 22, что уменьшает потери на трение в механизме выключения. На этой же стороне нажимного диска имеются, бобышки, на которые устанавливаются периферийные нажимные пружины сцепления. Толщина нажимного диска должна обеспечивать определенную теплоемкость диска во избежание его перегрева при кратковременной пробуксовке сцепления. По внешней окружности диска располагаются устройства, создающие его тангенциальную связь с кожухом сцепления, но допускающие осевое перемещение при включении и выключении сцепления. Эти устройства в разных сцеплениях могут иметь различное конструктивное исполнение: упругие тангенциальные пластины 4 с втулками 5; пазы и выступы соответственно в кожухе и на диске; пальцы, закрепленные в кожухе и маховике и пропущенные в отверстия в диске.

Кожух в сборе с нажимным диском, рычагами и пружинами тщательно балансируется.

Выключающие рычаги (стальные штампованные) изготавливаются жесткими, если в ведомом диске предусмотрены устройства, уменьшающие резкость включения сцепления, или упругими (например, в виде диафрагменной центральной пружины), когда такие устройства не предусмотрены. Потери на трение в механизме выключения минимальны, когда обе оси качания каждого выключающего рычага установлены на игольчатых подшипниках. При этом ось качания рычага, установленная в вилке кожуха, может при повороте рычага перемещаться относительно кожуха за счет упругой опорной пластины 19 и сферических поверхностей гайки на вилке 18 и гнезда, в отверстии кожуха.

Устройство однодискового сцепления

Рис. Устройство однодискового сцепления:
1 — коленчатый вал; 2 — маховик; 3 — нажимной диск; 4 — упругая пластина; 5 — втулка пружинных пластин; 6 — болт крепления пластин; 7 — нажимная пружина; 8 — картер сцепления; 9 — кожух сцепления; 10 — теплоизолирующая прокладка нажимной пружины; 11 — подшипник выключения сцепления; 12 — муфта подшипника; 13 — оттяжная пружина муфты; 14 — направляющая муфты; 15 — вилка выключения сцепления; 16 — рычаг выключения сцепления; 17 — регулировочная гайка вилки; 18 — вилка; 19 — опорная пластина регулировочной гайки; 20 — пальцы; 21 — крышка картера сцепления; 22 — игольчатые подшипники; 23 — болт крепления кожуха сцепления к маховику; 24 — пробка со шплинтом; 25 — щиток маслосборника; 26 — ведомый диск сцепления; 27 — масленка для смазывания переднего подшипника ведущего вала коробки передач; 28 — прокладка; 29 — щиток; 30 — ведущий вал коробки передач; 31 — передний подшипник ведущего вала коробки передач; 32 — масленка для смазывания вилки выключения сцепления; 33 — прокладка фланца; 34 — уплотнительное кольцо

В некоторых случаях кронштейны осей качания выключающих рычагов крепятся к кожуху жестко. Тогда для обеспечения поворота рычагов вместо игольчатого подшипника в вилке устанавливаются вдоль оси качания два цилиндрических ролика; иногда один из них имеет продольную лыску. Эти ролики, перекатываясь один по другому, обеспечивают некоторое смещение оси качания при повороте рычага. Регулировка положения внутренних концов выключающих рычагов в одной, перпендикулярной оси вращения, плоскости осуществляется либо гайками со сферической поверхностью, либо (при их отсутствии) специальными регулировочными винтами со сферическими головками, соприкасающимися при выключении сцепления с торцевой поверхностью муфты 12 выжимного подшипника выключения. В отрегулированном положении гайка и винты надежно фиксируются стопорными устройствами. В различных конструкциях сцеплений число выключающих рычагов колеблется от 3 до 20.

Пружины сцепления изготавливают из высококачественной пружинной стали и подвергают термической обработке. Пружины в частично сжатом состоянии устанавливают между кожухом и нажимным диском сцепления, обеспечивая прижатие трущихся поверхностей ведущих и ведомых частей сцепления во включенном состоянии. При выключении сцепления, когда пружины максимально сжаты, усилие их возрастает на 15…20%. В постоянно замкнутых сцеплениях усилие нажимных пружин во включенном, а в некоторых конструкциях и в выключенном состоянии замыкается внутри сцепления и не передается на подшипники валов. Под каждую пружину со стороны нажимного диска подложена теплоизолирующая прокладка 10 для предохранения пружин от нагрева и ухудшения их упругих свойств при сильном нагревании нажимного диска во время буксования сцепления.

Ведомый диск 26 сцепления через ступицу передает при включенном сцеплении вращающий момент двигателя на ведущий вал 30 коробки передач. Для увеличения силы трения к ведомому диску с обеих сторон прикреплены кольцевые накладки из фрикционного материала с большим коэффициентом трения. Диск соединен со ступицей заклепками или через детали гасителя крутильных колебаний. Обычно ведомый диск имеет радиальные прорези для уменьшения коробления.

Для увеличения плавности включения однодискового сцепления в ряде конструкций применяется так называемый пружинящий ведомый диск, когда к центральному плоскому диску приклепан рад секторов из листовой пружинной стали (секторы выполнены не плоскими, а изогнутыми). К секторам приклепываются фрикционные накладки. При включении сцепления по мере увеличения силы нажатия секторы диска постепенно выпрямляются и при полном включении сцепления принимают плоскую форму. Благодаря такой конструкции ведомого диска сила нажатия, а следовательно, и передаваемый вращающий момент возрастают постепенно, чем и обеспечивается плавное включение сцепления.

В других конструкциях между диском и фрикционными накладками устанавливаются фрикционные пластинчатые пружины, которые также увеличивают плавность включения сцепления.

Материалом для фрикционных накладок служит спрессованная при высокой температуре смесь из асбеста, наполнителя (медная проволока, железный порошок) и связующего вещества (синтетические смолы, каучук, бакелит).

В настоящее время все более широкое применение находят безасбестовые фрикционные материалы в связи с обнаруженной канцерогенностью асбеста. В качестве его заменителя используются синтетические арамидные волокна типа «Кевлар», стекло, керамика, борные и углеродные соединения, базальт, слюда, валлостонит и металлическое стальное волокно.

Коэффициент трения по чугуну применяемых фрикционных накладок составляет 0,25…0,40. На наружной поверхности накладок выполняют радиальные и спиральные канавки, способствующие вентиляционному охлаждению дисков и удалению продуктов износа.

План-конспект урока по теме: Конспект-сцепления

Назначение и типы

Сцеплением называется силовая муфта, в которой передача крутящего момента обеспечивается силами трения, гидродинамическими силами или электромагнитным полем. Такие муфты называются соответственно фрикционными, гидравлическими и электромагнитными.

Сцепление служит для временного разъединения двигателя и трансмиссии и плавного их соединения. Временное разъединение двигателя и трансмиссии необходимо при переключении передач, торможении и остановке автомобиля, а плавное соединение – после переключения передач и при трогании автомобиля с места. При движении автомобиля сцепление во включенном состоянии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Так, нагрузки в трансмиссии возрастают при резком торможении с двигателем, пре резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала, наезде колес на неровности дороги и т.д.

На автомобилях применяют различные типы сцеплений (схема 1).

Схема 1 – Типы сцеплений, классифицированных по различным признакам.

Все указанные сцепления, кроме центробежных, являются постоянно замкнутыми, т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

На автомобилях наибольшее применение получили фрикционные сцепленияОднодисковыесцепления применяются на легковых автомобилях, автобусах и грузовых автомобилях малой и средней грузоподъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко – только на автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве отдельного механизма на современных автомобилях не применяются. Ранее они использовались в трансмиссии автомобилей, но только совместно с последовательно установленным фрикционным сцеплением.

Электромагнитные сцепления имели некоторое применение на автомобилях, но широкого распространения не получили в связи со сложностью их конструкции.

Требования к сцеплениям

Одним из основных показателей сцепления является его способность к передаче крутящего момента. Для ее оценки используется понятие величины коэффициента запаса сцепления ß, определяемой следующим образом:

ß = МСЦ / Мmax

где МСЦ – максимальный крутящий момент, который может передать сцепление,

Мmax – максимальный крутящий момент двигателя.

Помимо общих требований, касающихся каждого узла автомобиля, к сцеплению предъявляется ряд специфических требований, среди которых:

1.     Плавность включения. В эксплуатации она обеспечивается квалифицированным управлением, но некоторые элементы конструкции предназначены для повышения плавности включения сцепления даже при низкой квалификации водителя.

2.     Чистота выключения. Абсолютное выключение, при котором крутящий момент на выходном вале сцепления равен нулю, труднодостижимо, но если момент, передаваемый выключенным сцеплением, достаточно мал и не мешает включать передачи, то можно считать, что такое сцепление выключено практически чисто.

3.     Надежная передача крутящего момента при любых условиях эксплуатации. Слишком низкое значение коэффициента запаса приводит к увеличению времени буксования сцепления при трогании автомобиля (особенно в тяжелых эксплуатационных условиях), повышенному его нагреву и износу. Излишне большая величина коэффициента запаса сопровождается увеличением размеров и массы сцепления, повышением усилия, необходимого для управления им, и ухудшением предохранения трансмиссии и двигателя от перегрузок. Обычно значениекоэффициента запаса сцепления составляют 1,4 – 1,7 для легковых и 1,5 – 2,0 для грузовых автомобилей, увеличиваясь до 2,3 на тяжелых тягачах.

4.     Минимальная величина момента инерции ведомых частей. Нарушение этого требования не скажется на выполнении сцеплением своих функций, однако будет приводить к удлинению процесса переключения передач и снижению срока службы синхронизаторов коробки передач.

5.     Удобство управления. Это общее для всех органов управления требование конкретизируется в виде требований к ходу педали и требуемому для ее нажатию усилию. Действующие в России ограничения в настоящее время составляют 150 Н усилия для автомобилей, имеющих усилители привода сцепления, и 250 Н для автомобилей без усилителей. Ход педали обычно не более 160 мм.

Типовое устройство сцепления — однодисковое, фрикционное

Фрикционным сцеплением называется дисковая муфта, в которой крутящий момент передается за счет силы сухого трения.

Широкое распространение на современных автомобилях получили однодисковые сухие сцепления.Однодисковым сцеплением называется фрикционная муфта, в которой для передачи крутящего момента применяется один ведомый диск.

Однодисковое сцепление (схема 2, а) состоит из ведущих и ведомых деталей, а также из деталей включения и выключения сцепления.

Схема 2 – Однодисковое фрикционное сцепление

а – включено; б – выключено; 1 – кожух; 2 – нажимной диск; 3 – маховик; 4 – ведомый диск; 5 – пластина; 6 – пружина; 7 – подшипник; 8 – педаль; 9 – вал; 10 – тяга; 11 – вилка; 12 – рычаг

Ведущими деталями являются маховик 3 двигателя, кожух 1 и нажимной диск 2, ведомыми – ведомый диск 4, деталями включения – пружины 6, деталями выключения – рычаги 12 и муфта с подшипником 7.

Кожух 1 прикреплен болтами к маховику. Нажимной диск 2 соединен с кожухом упругими пластинами 5. Это обеспечивает передачу крутящего момента от кожуха на нажимной диск и перемещение нажимного диска в осевом направлении при включении и выключении сцепления. Ведомый диск 4 установлен на шлицах первичного (ведущего) вала 9 коробки передач.

Сцепление имеет привод, в который входят педаль 8, тяга 10, вилка 11 и муфта с выжимным подшипником 7.

При отпущенной педали 8 сцепление включено, так как ведомый диск 4 прижат к маховику 3 нажимным диском 2 усилием пружин 6. Сцепление передает крутящий момент от ведущих деталей к ведомым через поверхности трения ведомого диска с маховиком и нажимным диском. При нажатии на педаль 8 (схема 2, б) сцепление выключается, так как муфта с выжимным подшипником 7 перемещается к маховику, поворачивает рычаги 12, которые отодвигают нажимной диск 2 от ведомого диска 4. В этом случает ведущие и ведомые детали сцепления разъединены, и сцепление не передает крутящий момент.

Однодисковые сцепления просты по конструкции, дешевы в изготовлении, надежны в работе, обеспечивают хороший отвод теплоты от трущихся поверхностей, чистоту выключения и плавность включения. Они удобны в обслуживании при эксплуатации и ремонте.

В однодисковых сцеплениях сжатие ведущих и ведомых деталей может производиться несколькими цилиндрическими пружинами, равномерно расположенными по периферии нажимного диска. Оно также может осуществляться одной диафрагменной пружиной или конической пружиной, установленной в центре нажимного диска.

Сцепление с периферийными пружинами несколько сложнее по конструкции (большое количество пружин). Кроме того, поломка одной из пружин в эксплуатации может быть не замечена, что приведет к повышенному износу сцепления.

Сцепление с одной центральной пружиной проще по конструкции и надежнее в эксплуатации. Прицентральной диафрагменной пружине сцепление имеет меньшие массу и габаритные размеры, а также меньшее количество деталей, так как пружина кроме своей функции выполняет еще и функцию рычагов выключения сцепления. Кроме того, она обеспечивает равномерное распределение усилия на нажимной диск. Сцепления с центральной диафрагменной пружиной применяются на легковых автомобилях из-за трудности изготовления пружин с большим нажимным усилием при малых габаритных размерах сцепления.

Сцепление с центральной конической пружиной имеет преимущество в том, что нажимная пружина не соприкасается с нажимным диском и поэтому при работе сцепления меньше нагревается и дольше сохраняет свои упругие свойства. Кроме того, благодаря конструкции нажимного механизма сцепление может передавать большой крутящий момент при сравнительно небольшой силе пружины. Такие сцепления применяются на грузовых автомобилях большой грузоподъемности.

Приводы сцеплений

Приводы фрикционных сцеплений могут быть механическими, гидравлическими и электромагнитными. Наибольшее применение на автомобилях получили механические и гидравлические приводы.

Механические приводы просты по конструкции и надежны в работе. Однако они имеют меньший КПД, чем гидравлические приводы сцеплений.

Гидравлические приводы, имея большие КПД, обеспечивают более плавное включение сцепления и уменьшают усилие, необходимое для выключения сцепления. Но гидравлические приводы сложнее по конструкции и в обслуживании, менее надежны в работе, более дорогостоящи и требуют больших затрат при обслуживании в эксплуатации.

Для облегчения управления сцеплением в приводах часто применяют механические усилители в виде сервопружин, пневматические и вакуумные. Так, сервопружины уменьшают максимальное усилие выключения сцепления на 20…40%.

 

 

 

 

 

 

 

 

 

Ведомый диск, корзина сцепления и маховик.

 Сцепление автомобиля очень важный элемент на который приходится большая нагрузка. Выбор механизма сцепления зависит от мощности и крутящего момента двигателя. Самый распространённый вариант — недорогое однодисковое сцепление с простой конструкции с органическими накладками ведомого диска, оно применяется на 95% автомобилей с механической коробкой передач. 

 Принцип работы заключается в следующем: ведомый диск зажимается двумя ведущими (роль которых выполняет маховик и корзина сцепления) и на него передаётся энергия от двигателя — колёсам. Органические материалы не любят высокой температуры, и расчитаны на эксплуатацию в спокойных условиях, без чрезмерных нагрузок. В случае резких стартов, езде по бездорожью, органический диск нагревается и начинает дымить.

 Каждый наверное сталкивался с такой ситуацией в какой нибудь колее на бездорожье, когда при попытке выехать из грязи появляется характерный запах «горелого сцепления». Его ресурс при этом очень резко сокращается, можно сказать несколько таких ситуаций, и диск сцепления начнёт пробуксовывать. Например при резком разгоне или подъёме в гору вы почувствуете, что двигатель набирает обороты, а машина не едет. Значит пора менять ведомый диск сцепления, процедура не из лёгких, связана со снятием коробки. Перегрев диска так же может вызвать отслоение фрикционных накладок, и будет не «буксовать», а «вести», то есть при полном выжиме передачи включаются с трудом.

 В автоспорте на сцепление приходится большая нагрузка, так как переключение передач осуществляется в диапазоне 6000-10000 об/мин на максимальной мощности двигателя. Стандартное сцепление не выдерживает таких нагрузок, и заменяется на более надёжную конструкцию.
 Самый простой способ — корзина с увеличенной прижимной силой на 30, 50 или даже 100%. Такое сцепление жёстко держит ведомый диск, но имеет свои недостатки. Возрастает усилие на педаль сцепления, что ухудшает скорость переключения передач. К тому же на переднеприводных ВАЗах выжим происходит с помощью тросика, который может порваться при чрезмерных нагрузках. В таких случаях устанавливают гидравлический привод выжима сцепления.

 

 Вместо органики в качестве фрикционного материала используют так же керамику, карбон и кевлар. Рассмотрим применение каждого материала подробнее.

 Керамика: не подвергается нагреву и выдерживает большие нагрузки. Но более «скользкая» по сравнению с другими видами фрикционных накладок. Требует высокой прижимной силы корзины. Резко переключается из «выключенного» состояния во «включенное».

 Карбон: обладает большим коэффициентом трения, чем керамика, поэтому переключение более плавное. Имеет лёгкий вес, больший ресурс и устойчив к перегреву.

 Кевлар: применяется в авиации и производстве бронежилетов. Износостойкость в 5-10 раз выше чем у органики. Хорошо переносит нагрев, но долго остывает, и способно нагреть ведомые диски. Имеет низкий коэффициент трения, как керамика.

 Ведомые диски сцепления могут быть с пружинным демпфером (центральная часть диска), так и без него. Пружинный демпфер применяется на всех стандартных автомобилях, смегчает ударные нагрузки, вызывает меньше шумов и вибраций но не предназначен для больших нагрузок.
 Беспружинные диски имеют лёгкий вес и обеспечивают четкое, быстрое переключение передач. Имеют меньший ресурс шлицов в связи с ударными нагрузками. Применяются только в автоспорте.

 

Маховик.

 На автомобилях которым требуется быстрый разгон, есть смысл применять облегчённый маховик, как и весь кривошипно-шатунный механизм. Уменьшение массы вращающихся частей двигателя на 10 кг при разгоне даёт такой же эффект, как уменьшение массы автомобиля на 100 кг. Легкие маховики не рекомендуются двигателям, которые работают на малых оборотах: дизеля, внедорожники. Высокооборотистые моторы, используемые для быстрого разгона должны быть максимально облегчены во вращающихся механизмах, но не в ущерб прочности. Маховик, коленвал и поршни с шатунами должны быть обязательно отбалансированны, во избежании разрушительных вибронагрузок.

 

Многодисковое сцепление.

Когда возможности однодискового сцепления исчерпали себя, на смену ему приходит многодисковое. Его коэфицент умножается на количество дисков, при этом не обязательно иметь корзину с большой прижимной силой. Ведомые диски используются как правило без пружин, для облегчения консрукции. Устройство по принципу работы такое же, как у обычного сцепления, но вместо одного ведомого диска используется два, или более.

 Количество ведущих дисков тоже увеличивается. Помимо маховика и нажимного диска в корзине, между ведомыми дисками находится ещё ведущий диск, который свободно перемещается вдоль оси вращения, но зацеплен за корзину, и вращается вместе с ней.
 Такие механизмы применяются на всех высокофорсированных гоночных автомобилях, к примеру на боллидах Формула 1 четырёх-дисковое сцепление. Существуют двух-дисковые комплекты для драговых автомобилей ВАЗ.

двойное сцепление

  Читая автомобильные обзоры последних лет, нередко можно встретить в описании коробку передач с двумя сцеплениями, а еще часто указываются мудреные названия этих коробок. И уже кажется ничего нового в этом нет, но вот только мало кто из читателей, да что читатели, не каждый автомобильный специалист механик сможет толком разъяснить как это и что это. А между тем, производители вложили немало сил, чтобы создать такую коробку передач, и уж точно в этом есть большой смысл. Как же работает эта коробка с двойным сцеплением? На этот сложный вопрос подробно и просто ответит вам эта статья.

Сразу стоит внести понимание того, что нового и лучшего дала эта коробка. Двойное сцепление делает движение максимально плавным, без рывков, а значит для многих это безопасное начало движения, кроме того, это экономия топлива. Как минус подобного новшества стоит отметить, что уж очень много новых и сложных механических элементов и узлов. А так как они расположены в системе сцепления и передачи крутящего момента, то ремонт будет вылетать в копейку, плюс ко всему за такой ремонт не каждый механик возьмется.

Как это было

Двойное сцепление изначально появилось у гоночных автомобилей и подолгу не приживалось в серийном производстве авто из-за сложности конструкции и цены. Как это ни удивительно, но далеким предком современного двойного сцепления был механизм, который еще в 1939 году Адольф Кегресс планировал поставить на гоночный Citroen Traction. о возможно война прервала эти разработки и сцепление так и осталось на чертежах. В конце 20 века производители и конструкторы легендарного Porsche задумались над воплощением этой идеи в жизнь. В итоге была создана коробка передач, которая позволяла не сбрасывая газ, переключать передачи, получился в своем роде уникальный механизм. Ведь если взять во внимание гоночное авто и соревнования, то там каждая секунда на счету, а такая КПП значительно экономила время. Любой автомобиль при переключении и сбросе газа теряет немало мощности, а значит и скорость, которую потом приходится активно набирать с затратами времени и топлива.

Как устроена КПП с двойным сцеплением

Основное новшество в такой коробке представляет собой двойной вал. В стандартном исполнении МКПП имеет один вал и шестерни, которые цепляются за него, в новом исполнении задача первого сцепления передать на внешний вал крутящий момент, т.е. все четные передачи. Второе же сцепление передает крутящий момент на внутренний вал, цепляя нечетные передачи. Если посмотреть на это в открытом виде, то вы увидите в одной коробке две механические коробки, которые успешно работают вместе, но попеременно.

Для управления такой коробкой были добавлены две системы — гидравлическая и автоматическая, но при этом здесь нет гидротрансформатора, который установлен в обычной АКПП. По типу устройства механизма коробки с двойным сцеплением бывают двух типов: сухого типа, и мокрого, когда узлы и механизмы находятся в масле. Система двойного сцепления DSG признана самой эффективной и продвинутой среди сухих типов двойного сцепления.

Как это работает

Как обычно, вы стартуете с минимальной скоростью на первой передаче, а автоматическая часть уже приготовила для вас вторую передачу. Теперь при переключении на вторую передачу происходит сброс первой на первом валу, а вторая на втором валу не зависимо от первой моментально включилась. Теперь, когда уже задействована вторая передача, автоматически подготавливается третья.

Автоматика, которая отвечает за подготовку и переключение, очень интересно устроена, при подготовке она учитывает ряд моментов:

  • в каком положении находится акселератор, здесь два варианта: либо он ускоряется, либо в отпущенном состоянии тормозит;
  • контролирует скорость вращения дисков;
  • на какой скорости вращаются валы трансмиссии;
  • учитывается, в каком положении рычаг коробки передач.

Есть такой короткий отрезок времени, в течение которого буквально на сотые доли секунды оба сцепления находятся в сомкнутом состоянии. При этом двигатель находится по-прежнему в сцепке с ведущими, поэтому никакой потери крутящего момента нет, и скорость с мощностью не падают. Возможно, поэтому двойное сцепление называют полуавтоматической трансмиссией, хотя это не совсем так.

Как уже говорилось выше, это две механические коробки передач, но вдвоем они работают так, что педаль сцепления не требуется. Огромный плюс переключения передач в том, что это можно сделать вручную, как делает водитель обычно, а можно с помощью компьютера и кнопок, расположенных на руле.

Положительные стороны двойного сцепления

  • движение становится очень плавным, нет никаких рывков и резких стартов, особенно как это бывает при МКПП;
  • не происходит никакой потери мощности при переключении, это благодаря линейному ускорению;
  • значительно экономится топливо, даже по сравнению с АКПП расход топлива на 10% меньше из-за отсутствия необходимости сбрасывать скорость, а потом газовать, чтобы набрать ее;
  • как уже говорилось, скорость можно переключать вручную или же с помощью компьютера;
  • для авто, где стоят мощные двигатели свыше 200 л/с, это просто незаменимая вещь.

Отрицательные моменты

  • устройство двойного сцепления сложное, при ремонтах вам придется значительно потратиться;
  • кроме того, сложно найти хорошего специалиста, ведь хотя технология уже достаточно давно развита, у нас не так часто их можно встретить, сервисы работают по старинке — МКПП и АКПП;
  • при слишком активном движении могут наблюдаться рывки или провалы из-за резкого торможения или разгона. Коробке с двойным сцеплением нужно время для обработки полученных данных от всех узлов и принятия решения, а это около 400-600 миллисекунд. Если ваш режим еще быстрее, то будут замечаться выше описанные эффекты.

Volkswagen еще в 2003 году начал установку коробок передач с прямым включением, по сей день они называются Direct Shift Gearbox, первые коробки были шестиступенчатые. Но теперь DSG на автомобилях нового поколения устанавливаются 7 ступенчатые.

Коробка с двойным сцеплением вобрала в себя все самое лучшее от МКПП и АКПП, здесь явно заметен минимальный расход топлива при очень плавном и комфортном ходе автомобиля. Но, конечно же, идеального нет ничего и во всем можно найти минусы.

На сегодняшний день практически все ведущие авто производители устанавливают на свои новинки коробки с двойным сцеплением. Это можно увидеть из обзоров таких авто как: BMW, Ford, Chrysler, Audi, Volvo и многих других. Многих покупателей останавливает покупка авто с таким сцеплением из-за высокой цены и непонимания того, что это из себя представляет.

Покупать авто с двойным сцеплением или нет это уже решать вам, в зависимости от того, нужен ли вам полный комфорт и есть ли у вас на это финансовые возможности.

Требования и классификация муфт сцепления

МегаПредмет



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса — ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший «Салат из свеклы с чесноком»


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков
Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Дисциплина: Конструкция Автомобилей и тракторов


Тема_2: Трансмиссии автомобилей

Лекция_3: «Муфты сцепления»

 

Требования и классификация муфт сцепления

Механическая трансмиссия должна иметь возможность кратковременного разъединения от работающего двигателя. Это необходимо при остановках автомобиля и при переклю­чении передач в механической ступенчатой коробке передач. Кроме того, при троганье автомобиля с места и переключении передач соединение вала двигателя и трансмис­сии должно происходить плавно, без резких рывков. В связи с этим возникает необхо­димость в специальном устройстве, обеспечивающем постепенное нагружение двигателя. В качестве такого устройства обычно применяется управляемая муфта. Использование муфты сцепления необходимо для переключения передач т.к. если трансмиссия находится под нагрузкой кру­тящим моментом, переключение невозможно. Прежде чем переключить передачу, муфту сцепле­ния необходимо выключить.

Сцеплением называется силовая муфта, в которой передача кру­тящего момента обеспечивается силами трения, гидродинамичес­кими силами или электромагнитным полем. Такие муфты называ­ются соответственно фрикционными, гидравлическими и элект­ромагнитными.

При движении автомобиля сцепление во включенном состоя­нии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Такие нагрузки в трансмиссии воз­никают при резком торможении автомобиля, резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала, а также при наезде колес автомобиля на неровности дороги и т.д.

На автомобилях применяются различные типы сцеплений, ко­торые классифицируются по разным признакам (рис. 2.1). Все сцеп­ления, кроме центробежных, являются постоянно замкнутыми, т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

Наибольшее применение на автомобилях получили фрикцион­ные сцепления — однодисковые и двухдисковые.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)

Рисунок 2.1 – Классификация муфт сцепления по различным признакам

 

Однодисковые сцепления применяются на легковых автомоби­лях, автобусах и грузовых автомобилях малой и средней грузо­подъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомоби­лях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко — толь­ко на грузовых автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве от­дельного механизма трансмиссии на современных автомобилях не применяются. Ранее они использовались совместно с последова­тельно установленным фрикционным сцеплением.

Электромагнитные сцепления широкого распространения не получили в связи со сложностью их конструкции.

При анализе и оценке конструкций сцеплений, как и других механизмов, следует руководствоваться предъявляемы­ми к ним требованиями:

· надежная передача крутящего момента от двигателя к трансмиссии;

· плавность и полнота включения; чистота выключения;

· минимальный момент инерции ведомых элементов;

· хороший отвод теплоты от поверхно­стей трения;

· предохранение трансмиссии от динами­ческих нагрузок;

· поддержание нажимного усилия вза­данных пределах в процессе эксплуата­ции;

· минимальные затраты физических уси­лий на управление;

· хорошая уравновешенность.

Кроме того, к сцеплению, как и ко всем механизмам автомобиля, предъявляют такие общие требования: обеспечение ми­нимальных размеров и массы, простота устройства и обслуживания, техноло­гичность, ремонтопригодность, низкий уро­вень шума.

Надежная работа сцепления без перегрева и значительных износов особенно важна в тяжелых дорожных условиях движения автомобиля и при наличии прицепа и полуприцепа, когда имеют место более частые включения и выключения, а также буксова­ние сцепления.

Сцепление при надежной работе должно обеспечивать возмож­ность передачи крутящего момента, превышающего крутящий момент двигателя. С изнашиванием фрикционных накладок ведо­мого диска усилие нажимных пружин ослабевает, и сцепление начинает буксовать. При этом длительное буксование сцепления приводит к его сильному нагреву и выходу из строя.

Сцепление должно включать­ся плавно, чтобы не вызывать повышенных нагрузок в механиз­мах трансмиссии и очень больших ускорений автомобиля, кото­рые отрицательно влияют на водителя, пассажиров и перевози­мые грузы. Так, например, при резком включении сцепления скру­чивающие нагрузки в трансмиссии могут быть в 3 — 4 раза больше максимального крутящего момента двигателя. Это происходит по­тому, что при быстром отпускании педали управления усилие сжатия ведущих и ведомых частей сцепления в начальный момент создается не только нажимными пружинами, но и кинетической энергией перемещающегося к маховику двигателя нажимного диска и связанных с ним деталей. При этом в момент соприкосновения ведущих и ведомых частей сцепления усилие их сжатия в несколь­ко раз превышает силу нажимных пружин.

Плавность включения сцепления обеспечивается главным об­разом благодаря упругим свойствами ведомого диска, которые зависят от его конструкции. Плавности включения сцепления так­же способствуют пружины гасителя крутильных колебаний. Одна­ко влияние этих пружин незначительно, так как их деформация при включении сцепления невелика. На плавность включения сцеп­ления влияет и упругость деталей привода управления сцеплени­ем. Так, например, в сцеплении с диафрагменной пружиной боль­шую упругость имеют рычаги (лепестки) выключения сцепления, которые выполнены вместе с диафрагменной пружиной.

Наиболее высокую плавность включения обеспечивают много­дисковые сцепления. Однако они применяются очень редко и толь­ко на тяжелых грузовых автомобилях.

Крутящий момент двигателя должен передаваться на транс­миссию без буксования сцепления.

Полнота включения сцепления достигается специальными ре­гулировками сцепления и его привода. Эти регулировки обеспе­чивают необходимый зазор между выжимным подшипником муфты выключения сцепления и концами рычагов выключения, а также пропорциональный указанному зазору свободный ход педали сцеп­ления, который обычно составляет 20…40 мм.

При значительном изнашивании трущихся поверхностей веду­щих и ведомых частей сцепления указанный зазор уменьшается, и рычаги выключения упираются в выжимной подшипник муфты выключения, что препятствует созданию пружинами необходи­мого нажимного усилия.

Чистота выключения сцепления характе­ризует полное разъединение двигателя и трансмиссии, при кото­ром ведущие детали сцепления не ведут за собой ведомые.

При неполном выключении сцепления затрудняется переклю­чение передач (оно происходит с шумом), что приводит к изна­шиванию шестерен и синхронизаторов. Если же сцепление вы­ключено не полностью, а в коробке передач включена передача, то при работающем двигателе сцепление будет буксовать. Это при­водит к нагреву деталей сцепления и изнашиванию фрикционных накладок ведомого диска.

Чистоте выключения сцепления препятствует трение в ступи­це ведомого диска, которая установлена на шлицах первичного вала коробки передач. При выключении сцепления ведомый диск находится под действием осевой силы, которая прижимает его к маховику. Значение осевой силы ограничивается силой трения в шлицевом соединении ступицы диска и первичного вала коробки передач.

В многодисковом сцеплении остаточная осевая сила подсчиты­вается последовательным суммированием сил трения, возникаю­щих в шлицевых соединениях всех ведомых дисков.

Остаточная осевая сила в многодисковом сцеплении значитель­но больше, чем в однодисковом, вследствие этого требуемая чи­стота выключения многодискового сцепления не обеспечивается.

В однодисковых сцеплениях полное разъединение двигателя и трансмиссии обеспечивается соответствующим отводом нажим­ного диска от маховика. В двухдисковых сцеплениях принудитель­ный отвод среднего ведущего диска осуществляется различными специальными устройствами (равноплечим рычагом, упорным стержнем и др.). Зазор между трущимися поверхностями при от­воде нажимного диска в однодисковых сцеплениях составляет 0,75… 1,0 мм, в двухдисковых — 0,5…0,6 мм, а в многодисковых — 0,25…0,3 мм. При этом ход нажимного диска при выключении сцепления не превышает 1,5…2,0 мм для однодисковых сцепле­ний и 2,0…2,5 мм для двухдисковых сцеплений.

Минимальный момент инерции ведомых частей. Для уменьше­ния ударных нагрузок шестерен включаемых передач и работы трения в синхронизаторах при переключении передач в коробке передач момент инерции ведомых частей сцепления должен быть минимальным. При включении несинхронизованной передачи ударная нагрузка на зубья шестерен пропорциональна моменту инерции ведомых частей сцепления.

Ударный импульс при включенном сцеплении может быть в 50…200 раз больше, чем ударный импульс, возникающий при переключении передач с выключенным сцеплением.

Снижение момента инерции ведомых частей сцепления дости­гается уменьшением диаметра ведомого диска и массы фрикци­онных накладок. Так, диаметр ведомых дисков сцеплений автомо­билей большой грузоподъемности обычно не превышает 400 мм. Толщина фрикционных накладок сцеплений составляет 3,3…4,7 мм. Однако это не всегда возможно, так как указанные размеры опре­деляются крутящим моментом, передаваемым сцеплением. Кроме того, при уменьшении диаметра ведомого диска необходимо уве­личивать число поверхностей трения, чтобы сцепление могло пе­редавать крутящий момент. Но увеличение числа поверхностей трения при уменьшении диаметра ведомых дисков приводит не к уменьшению, а к значительному увеличению момента инерции ведомых частей сцепления. Так, например, момент инерции ведо­мых частей у двухдискового сцепления значительно больше, чем у однодискового, рассчитанного на передачу такого же крутящего момента.

Применение фрикционных накладок с повышенным коэффи­циентом трения (из спеченных материалов) позволяет уменьшить диаметр ведомого диска, но из-за увеличения массы фрикцион­ных накладок момент инерции ведомых частей сцепления не сни­жается.

Таким образом, уменьшить момент инерции ведомых частей сцепления можно только за счет уменьшения массы ведомого диска. Поэтому ведомый диск выполняют из тонкого стального листа толщиной 2…3 мм.

До недавнего времени для фрикционных сцеплений применялись в основном фрикционные накладки, в состав которых входили асбест, наполнители и связующие материалы. В настоя­щее время все большее распространение получают фрикционные накладки без асбеста или с минимальным его содержанием. Это связано с тем, что асбестовая пыль признана опасной для здоровья человека. В современных механизмах сцепления применяются композитные материалы, обладающие улучшенными по сравнению с асбестом характеристиками. Но в случаях, когда требуется передать на узлы трансмиссии крутящий момент очень большой величины, фрикционные материалы оказываются непригодными. Поэтому в гоночных автомобилях и в сверхтяжелой технике (грузовиках, тягачах) применяют керамические фрикционные накладки. Они обладают очень высокой износостойкостью, нечувствительны к перегреву, но не обеспечивают плавной передачи крутящего момента на сцепление.

Стабильная и надежная работа сцепления существен­но зависит от его теплового состояния. Поэтому необходимо под­держивать постоянный тепловой режим муфты сцепления.

При трогании автомобиля с места происходит буксование сцеп­ления. Это приводит к нагреву деталей сцепления и выделению теплоты на поверхностях трения его ведущих и ведомых частей. Так, например, одно включение сцепления повышает температу­ру нажимного диска на 7… 15°С. Температура фрикционных на­кладок ведомого диска также повысится и понизится коэффици­ент их трения. При этом надежная работа сцепления будет нару­шена, так как сцепление будет буксовать не только при трогании автомобиля с места, но и во время движения.

При длительном буксовании сцепления температура его по­верхностей трения может превысить 300 °С, тогда как уже при 200 °С коэффициент трения снижается почти в два раза. Высокая температура приводит к вытеканию связующего компонента фрикционных накладок, они становятся сухими, пористыми и быстро изнашиваются.

При высокой температуре также может произойти коробление ведомого и нажимного дисков, появление трещин на нажимном диске и выход сцепления из строя.

Для предохранения сцепления от указанных негативных явле­ний осуществляют различные конструктивные мероприятия, спо­собствующие хорошему отводу теплоты от трущихся поверхнос­тей ведущих и ведомых частей. Примером могут служить вентиля­ционные отверстия с металлическими сетками в картере сцепле­ния и большое количество отверстий в кожухе сцепления, сде­ланные для улучшения циркуляции воздуха; рычаги выключения сцепления, выполненные в форме лопастей вентилятора, охлаж­дающего сцепление; массивный нажимной диск в виде кольца, обеспечивающий лучший отвод теплоты от ведомого диска; ка­навки в фрикционных накладках для циркуляции воздуха. Кроме того, канавки в фрикционных накладках служат для удаления под действием центробежных сил продуктов износа, снижающих ко­эффициент трения. Они также способствуют чистоте выключения сцепления, устраняя присасывание (прилипание) фрикционных накладок к рабочим поверхностям маховика двигателя и нажим­ного диска.

К муфтам сцепления предъявляется так же ряд общих требований, касающихся массы, габаритов, ремонтопригодности, стоимости, динамических нагрузок и т.д. Благодаря удовлетворению большинства требований, наибольшее распространение получили фрикционные однодисковые и двухдисковые муфты сцепления.

В свою очередь фрикционные сухие муфты сцепления разделяются по ряду признаков:

· по способу действия неавтоматические и автоматические. В настоящее время обычно применяют неавтоматические сцепления. Автома­тические сцепления установлены на некоторых моделях легковых зарубеж­ных и отечественных автомобилей. Ав­томатическим может быть само сцеп­ление (центробежное) по принципу его работы или система управления, обеспечивающая работу неавтомати­ческого сцепления (обычно фрикцион­ного или электромагнитного) по задан­ному алгоритму без вмешательства во­дителя.

· по числу ведомых дисков — на од­но- и двухдисковые. Однодисковые сцепления используют на легковых и грузовых автомобилях малой и сред- ней грузоподъемности. Двухдисковые сцепления устанавливают на автомо­билях большой грузоподъемности.

· по расположению нажимных пру­жин — на периферийные и централь­ные. По периферии устанавливают ряд цилиндрических пружин, а централь­но — одну коническую, цилиндричес­кую или тарельчатую. Последние по­лучили распространение в сцеплениях легковых автомобилей, остальные ти­пы применяют в сцеплениях грузовых автомобилей и автобусов.

· по типу привода — на сцепления с механическим и гидравлическим при­водом без усилителя и с усилителем. Усилители выполняют механически­ми, гидравлическими, пневматически­ми или вакуумными.

 

Конструкции фрикционных муфт сцеплений (рисунок 2.10)

Фрикционным сцеплением называется дисковая муфта, в кото­рой крутящий момент передается за счет силы сухого трения. По­этому такие сцепления называются также сухими.

На автомобилях широкое распространение получили однодис­ковые и двухдисковые фрикционные сцепления. Многодисковые фрикционные сцепления применяются очень редко на тяжелых грузовых автомобилях.

Однодисковое сухое сцепление. Однодисковым сцеплением на­зывается фрикционная муфта, в которой для передачи крутящего момента применяется один ведомый диск.

Однодисковые сцепления просты по конструкции, дешевы в изготовлении, надежны в работе, обеспечивают хороший отвод теплоты от трущихся поверхностей, чистоту выключения и плав­ность включения. Они удобны в обслуживании при эксплуатации и ремонте.

Принципиальная схема однодискового фрикционного сцепле­ния показана на рисунке 2.2.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)

Рисунок 2.2 – Принципиальная схема работы муфты сцепления.

а — включено; б — выключено; 1 — кожух; 2 — нажимной диск; 3 — маховик; 4 — ведомый диск; 5 — пластина; 6 — пружина; 7 — подшипник; 8 — педаль; 9 — вал; 10 — тяга; 11 — вилка; 12 — рычаг

Принцип работы.

Ведущими деталями являются маховик 3 двигателя, кожух 1 и нажимной диск 2, ведомыми — ведомый диск 4, деталями вклю­чения — пружины 6, деталями выключения — рычаги 12 и муфта с выжимным подшипником 7.

Кожух 1 прикреплен болтами к маховику. Нажимной диск 2 соединен с кожухом упругими пластинами 5, которые обеспечи­вают передачу крутящего момента от кожуха на нажимной диск и осевое перемещение нажимного диска при включении и выклю­чении сцепления. Ведомый диск установлен на шлицах первично­го (ведущего) вала 9 коробки передач.

При отпущенной педали 8 сцепление включено, так как ведо­мый диск 4 прижат к маховику 3 нажимным диском 2 усилием пружин 6. Сцепление передает крутящий момент от ведущих дета­лей к ведомым через поверхности трения ведомого диска с махо­виком и нажимным диском. При нажатии на педаль 8 (рисунок 2.2, б) сцепление выключается, так как муфта с выжимным подшипни­ком 7 перемещается к маховику, поворачивает рычаги 12, кото­рые отодвигают нажимной диск 2 от ведомого диска 4. В этом слу­чае ведущие и ведомые детали сцепления разъединены и сцепле­ние не передает крутящий момент.

Пружины.

В автомобильных сцеплениях применяют цилиндриче­ские, конические и тарельчатые пру­жины. Их сравнительные характери­стики показаны на рисунке 2.3. Цилиндри­ческие пружины имеют линейную характеристику во всем рабочем диапа­зоне. Характеристика конической пру­жины до посадки витков также явля­ется линейной, затем по мере выклю­чения витков из работы жесткость пружины увеличивается. Это является недостатком, так как обусловливает увеличение усилия при выключении сцепления и значительное снижение нажимного усилия при изнашивании фрикционных накладок. Наиболее бла­гоприятна характеристика тарельчатой пружины, усилие которой в рабочем диапазоне изменяется незначительно при выключении сцепления и изнаши­вании фрикционных накладок.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)

Рисунок 2.3 – Характеристики пружин фрикционных муфт сцепления: а – коническая; б-цилиндрическая; в-диафрагменная.

 

Цилиндрические пружины в совре­менных сцеплениях устанавливают по периферии, что обес­печивает равномерное сжатие трущих­ся поверхностей за счет симметричного расположения пружин относительно друг друга и отжимных рычагов. В за­висимости от их числа нажимные пру­жины располагаются на одной или двух окружностях нажимного диска. Для центрирования пружин и умень­шения их деформации при действии центробежных сил применяют стака­ны, бобышки или выступы на нажим­ном диске и кожухе сцепления.

Вместо периферийных пружин мо­жет устанавливаться центрально одна цилиндрическая пружина. При этом уменьшается диаметр сцепления, а его осевые размеры увеличиваются. Ис­пользование более сложной в изготов­лении конической пружины, устанав­ливаемой центрально, позволяет уменьшить и осевые разме­ры сцепления. В таких сцеплениях усилие сжатия пружины ре­гулируется при помощи прокладок.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)

Рисунок 2.5 – Диафрагменная пружина
 
Рисунок 2.4 — Однодисковое сцепление с конической пружиной грузового автомобиля:
1 — нажимной диск; 2 регулировочные прокладки; 3 — фланец; 4 — рычаг, 5— коническая пружина; 6 — втул­ка; 7 — муфта; 8 кожух; 9 — пружина; 10— ведомый диск; 11— маховик; 12 — обойма
 

 

Тарельчатые пружины благодаря своим достоинствам широко использу­ются в автомобильных сцеплениях (особенно легковых автомобилей). Тарельчатая пружина (рисунок 2.5) имеет форму усеченного конуса и состоит из сплошного кольца с меридиально рас­положенными лепестками, выполняю­щими функции упругих отжимных ры­чагов. Возможны два варианта уста­новки тарельчатой пружины. В первом варианте на на­жимной диск пружина действует на­ружным краем сплошного кольца, во втором — внутренним. Первый вариант наиболее широко при­меняется в силу простоты механизма выключения сцепления. Во втором варианте упрощается кон­струкция механизма установки пружи­ны, уменьшаются усилие выключения и напряжения в пружине. Однако в этом случае для выключения сцепле­ния внутренние концы лепестков пру­жины необходимо перемещать в на­правлении от нажимного диска, что усложняет конструкцию механизма вы­ключения.

При использовании тарельчатых пружин упрощается конструкция сцеп­ления, уменьшаются его размеры, число деталей, обеспечивается плавное включение, равномерная нагрузка на нажимной диск, малое изменение нажимного усилия при изнашивании на­кладок.


Кинематические схемы и назначение агрегатов трансмиссии погрузчика


Категория:

   Погрузчики


Публикация:

   Кинематические схемы и назначение агрегатов трансмиссии погрузчика


Читать далее:

Кинематические схемы и назначение агрегатов трансмиссии погрузчика

С устройством и работой агрегатов трансмиссии изучаемых автопогрузчиков можно ознакомиться на примере кинематической схемы погрузчика 4043М.

Рис. 1. Кинематическая схема трансмиссии погрузчика 4043М:
1 — нажимный диск, 2, 3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 18, 20, 21, 22, 25 — зубчатые ко-леса, 5— ось, 12, 17, 26, —валы, 9, 19 — карданные валы, 11 — дифференциал

Крутящий момент, необходимый для вращения ведущих колес автопогрузчиков, передается от коленчатого вала двигателя через трансмиссию — силовую передачу, состоящую из сцепления, коробки передач, реверсивного механизма, ведущего моста и карданных валов.

Рекламные предложения на основе ваших интересов:

Сцепление предназначено для временного отсоединения трансмиссии от коленчатого вала двигателя и для плавного их соединения. Работа сцепления основана на использовании сил трения.

Основные части сцепления — ведущий диск, который является также маховиком двигателя, ведомый диск, от которого вращение передается на вал, и нажимной диск, соединенный с маховиком. Специальным нажимным устройством ведомый диск прижимается нажимным диском к ведущему диску. Под действием сил трения, возникающих между нажимным и ведущим дисками, ведомый диск вращается вместе с ними. При нажатии на педаль сцепления нажимный диск смещается и ведомый диск освобождается.

Коробка перемены передач представляет собой двухступенчатый редуктор, передаточное число которого может изменяться водителем для изменения тягового усилия в соответствии с условиями движения. Очевидно, наибольшее тяговое усилие должно быть при движении нагруженного погрузчика на подъеме, при этом передаточное число коробки передач устанавливается максимальным. Основные части коробки перемены передач: ведущий вал, ведомый вал и промежуточный вал (с ним связаны зубчатые колеса 2, 3, 4, 6, имеющие различные диаметры).

Ведомые зубчатые колеса посажены на шлицах и, вращая вал, могут одновременно скользить вдоль него, входить в зацепление с различными зубчатыми колесами промежуточного вала, что позволяет изменять передаточное число между ведущим и ведомым валами коробки перемены передач.

Зубчатые колеса имеют полумуфты. Кроме того зубчатое колесо, вращаясь вместе с валом одновременно может перемещаться вдоль его оси.

Зубчатые колеса объединены в один блок и также могут передвигаться вдоль вала. Зубчатые колеса объединяются в один блок валом и могут вращаться на оси .

Показанное на чертеже положение соответствует холостому ходу, при котором вращаются ведущее зубчатое колесо и блок промежуточных зубчатых колес. Ведомый вал остается неподвижным.

Реверсивный механизм предназначен для изменения направления движения погрузчика и одновременно является понижающим редуктором с постоянным передаточным числом. На ведущем валу жестко закреплены зубчатые колеса на ведомом валу — зубчатое колесо 8, которое может перемещаться вдоль оси вала. Между валами расположена ось с зубчатым колесом, которое находится в постоянном зацеплении с зубчатым колесом. Вводя в зацепление зубчатое колесо с ведущим зубчатым колесом или промежуточным, можно изменять направление вращения вала, что и соответствует изменению направления движения погрузчика.

От реверсивного механизма через карданный вал крутящий момент передается ведущему мосту. Он состоит из одноступенчатой главной передачи (зубчатые колеса), дифференциала и приводных валов.

Валы отдельных агрегатов трансмиссий соединяются между собой карданными валами. Благодаря особому устройству специальных шарниров карданные валы обеспечивают передачу крутящих моментов между несоосными валами и в процессе работы допускают изменение величины несоосности.

Кинематическая схема трансмиссии погрузчика 4045М отличается 0т рассмотренной установки двухступенчатой главной передачи ведущего моста.

Несколько иначе устроена трансмиссия погрузчика Ф17.ДУ32.33. тягу с педалью. В исходное положение муфта, подшипник и вилка оттягиваются возвратной пружиной.

В сцеплении смазывается упорный подшипник. Для смазки подшипника на крышке бокового люка картера устанавливается масленка, соединенная с муфтой гибким шлангом.

В сцеплении регулируется зазор между упорными болтами рычагов и нажимным подшипником. Он должен равняться 3—4 мм. По мере износа фрикционных накладок зазор уменьшается и может «возникнуть положение, при котором подшипник будет постоянно нажимать на рычаги, вызывая пробуксовывание сцепления.

Нормальному зазору соответствует ход педали, равный 35—45 мм. Эту величину можно установить поворотом гайки регулируемой тяги.

Сцепление погрузчика Ф17.ДУ32.33 показано на рис. 2. Его принципиальное устройство аналогично рассмотренной выше конструкции.

Рис. 165. Сцепление погрузчика Ф17.ДУ32.33.1:
1— колпачковая масленка, 2 — шланг, 3 —нажимная муфта, 4—возвратная пружина, 5—крышка, 6—вилка, 7—шаровой палец, 8 — пружина, 9 — маховик, 10 — ведомый диск, 11 — кожух. 12 — болт, 13 — нажимный диск, 14 — кронштейн, 15—рычаг, 16— первичный вал, 17—опорный шариковый подшипник, 18—нажимная пружина

Его литой массивный корпус прикреплен к двигателю болтами. Ведомый диск 10 надет шлицевой ступицей на вал — ведущий вал коробки перемены передач. Ведущая часть сцепления образована торцовой поверхностью маховика, кожухом и нажимным диском. Пружины установлены между нажимным диском и кожухом и обеспечивают необходимое сжатие ведущей и ведомой части сцепления, при этом теплоизолирующие шайбы под пружинами предупреждают их перегрев и самоотпуск.

Рис. 3. Устройства управления погрузчиком Ф17.ДУ32.33.1:
1 — ограничительный болт, 2 — гибкая тяга регулировки подачи топлива, 3 — возвратная пружина, 4 — рукоятка ручной подачи топлива, 5—педаль сцепления, 6—педаль подачи топлива, 7—возвратная пружина, 8— вилка, S — тяга, 10— специальная гайка, 11 — пресс-масленка

Механизм выключения сцепления состоит из рычагов с упорными Регулировочными болтами на внутренних концах, нажимной муфты с упорным подшипником и выключающей вилки, опирающейся на шаровый палец.

В сцеплении регулируется зазор между регулировочными винтами « и нажимным подшипником. Он должен быть равен 4 мм, что соответствует свободному ходу педали привода выключения в 34—45 мм.

В сцеплении смазывается нажимный подшипник, в которому от колпачковой масленки подведен маслопроводной гибкий шланг.

Привод выключения сцепления шарнирно-рычаждого типа.


Рекламные предложения:

Читать далее: Коробка перемены передач погрузчиков

Категория: —
Погрузчики

Главная → Справочник → Статьи → Форум

Схема однодискового фрикционного сцепления — Студопедия

Методические указания

К оформлению и выполнению контрольных работ

1. Выполнение контрольной работы начинается с изучения теоретического материала по дисциплине «Устройство автотранспортных средств».

2. Работа оформляется в ученической тетради на 12 листов. Ориентировочный объем контрольной работы – 2/3 ученической тетради.

3. Страницы в тетради следует пронумеровать, оставив поля (3 см).

4. В тетради в клетку следует писать через строку, в линейку – на каждой строчке.

5. Контрольное задание рекомендуется выполнять чернилами одного цвета, аккуратно, без сокращения слов. Необходимо обращать внимание на правильное построение предложений и грамотность изложения.

6. Выполняя контрольное задание, нужно сначала переписать вопросы индивидуального задания, а затем дать на каждый подпункт краткий, но емкий ответ.

7. Излагая устройство механизма или прибора, нельзя ограничиваться только перечислением деталей, не описывая их назначения, взаимосвязи, способы крепления и места расположения в узле или на автомобиле.

8. Не следует перерисовывать сложные чертежи или пространственные изображения (например, коробка передач, сцепления, карбюраторы, двигатели и т.д.). Их необходимо заменить упрощенными схемами, которые должны выполняться карандашом с соблюдением правил черчения, грамотно и аккуратно, в масштабе (см. рисунки 1, 2, 3, 4). На схемах и в тексте необходимо проставлять цифровые обозначения и их наименования.



9. Категорически запрещается переписка книжного текста и копирование схем из учебника.

10. После ответа на вопрос требуется оставлять место на замечание рецензента.

11. Поле выполнения задания в конце тетради должен быть представлен список использованной литературы (по ГОСТу), поставлена дата выполнения работы и подпись.

12. В конце работы должен быть оставлен чистый лист для рецензии.

13. Индивидуальное задание нужно вклеить (за уголок или за один из краёв) в выполненную контрольную работу сдать или выслать на проверку.

 

 

 

 

Схема четырехтактного одноцилиндрового

Карбюраторного двигателя

 

 

1 — впускной клапан

2 — выпускной клапан

3 — поршень

4 — цилиндр

5 — кривошип

6 — шатун

7 — головка цилиндра

8 — свеча зажигания

9, 10 — поршневые кольца

11 — поршневой палец

Рисунок 1

 

 

 

 

Схема однодискового фрикционного сцепления

 

1 — маховик

2 — маховик

3 — ведомый диск

4 — нажимной диск

5 — кожух

6 — пружина

7 — гаситель крутильных колебаний

8 — ведущий вал коробок передач

9 — муфта выключения сцепления

10 — оттяжной рычаг

11 — опора рычага

12 — направляющий палец

 

Рисунок 2

 

 

 

 

Двухдисковое сцепление фрикционное, схема, устройство, принцип работы, привод

Двухдисковым называется сцепление, в котором для передачи крутящего момента применяются два ведомых диска.

Двухдисковое сцепление при сравнительно небольших размерах позволяет передавать крутящий момент большой величины. Поэтому двухдисковые сцепления применяются на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Устройство

В двухдисковом сцеплении (схема 1) ведущими деталями являются маховик 13 двигателя, кожух 7, нажимной диск 8 и ведущий диск 11, ведомыми – ведомые диски 9 и 12, деталями включения – пружины 6, деталями выключения – рычаги 4 и муфта выключения 5 с выжимным подшипником.

Схема 1 – Двухдисковое фрикционное сцепление

1, 6 – пружины; 2 – болт; 3, 10 – пальцы; 4 – рычаг; 5 – муфта; 7 – кожух; 8 – нажимной диск; 9, 12 – ведомые диски; 11 – ведущий диск; 13 – маховик

Кожух 7 прикреплен к маховику 13 и связан с нажимным 8 и ведущим 11 дисками направляющими пальцами 10, которые входят в пазы дисков. Вследствие этого нажимной и ведущий диски могут свободно перемещаться в осевом направлении и передавать крутящий момент от маховика на ведомые диски, установленные на шлицах первичного вала коробки передач.






Принцип работы


При включенном сцеплении пружины 6 действуют на нажимной диск, зажимая между ним и маховиком двигателя ведущий и ведомые диски.

При выключении сцепления муфта 5 давит на рычаги 4, которые через оттяжные пальцы 3 отводят нажимной диск от маховика двигателя. При этом между маховиком, ведомыми, ведущими и нажимным дисками создаются необходимые зазоры, чему способствуют отжимные пружины 1 и регулировочные болты 2.

В двухдисковых сцеплениях сжатие ведущих и ведомых деталей может производится несколькими цилиндрическими пружинами, равномерно расположенными в один или два ряда по периферии нажимного диска. Сжатие также может осуществляться одной центральной конической пружиной.

Привод

Двухдисковые сцепления могут иметь механические и гидравлические приводы. Для облегчения управлением двухдисковым сцеплением в приводе устанавливаются пневматические усилители, значительно снижающие максимальное усилие выключения сцепления.

Двухдисковые сцепления по конструкции сложнее однодисковых и имеют большую массу.









Другие полезные статьи по сцеплениям:


Моделирование

и кинематическое моделирование колесной платформы Mecanum в RecurDyn

Предлагается инновационный метод моделирования и симуляции кинематики в RecurDyn, в котором колесная платформа Mecanum (MWP) используется в качестве объекта исследования. Для изучения характеристик движения и мобильных характеристик MWP в SolidWorks создается имитационная модель виртуального прототипа, а в RecurDyn выполняется моделирование виртуального прототипа. Представлен опыт моделирования для MWP в RecurDyn, и подробно описаны шаги моделирования и моменты, требующие внимания.Рабочие состояния мобильной системы в реальной среде были смоделированы с помощью виртуальных симуляционных экспериментов. В RecurDyn смоделированы четыре типичных модели движения, включая движение вперед, движение вбок, движение вбок в направлении 45 ° и вращение. Результаты моделирования точно отражают движение MWP. Сравнивая результаты моделирования с теоретическими результатами, можно обнаружить приемлемые ошибки, которые в целом относительно меньше в результатах моделирования. Результаты моделирования можно использовать для прогнозирования производительности платформы и оценки рациональности дизайна, а качество дизайна может быть улучшено в соответствии с выявленной проблемой.В этом документе можно найти справочник по моделированию мобильной платформы с помощью RecurDyn.

1. Введение

С развитием компьютерных технологий и увеличением требований к инженерным приложениям, технология виртуального прототипирования (VPT) [1–4] постепенно входит в поле зрения людей. Технология виртуального прототипирования, ядром которой являются кинематика механических систем, динамика и теория управления, представляет собой новую инженерную технологию, которая быстро развивается благодаря зрелой технологии трехмерной компьютерной графики, технологии графического интерфейса пользователя и зрелому рынку.

Recursive Dynamic (RecurDyn) [5] — это программное обеспечение для оптимизации моделирования многотельных систем последнего поколения, разработанное компанией FunctionBay на основе рекурсивного алгоритма. Теория уравнений движения относительной системы координат и полный рекурсивный алгоритм используются для решения задач, что делает его идеально подходящим для решения задачи динамики многотельных объектов крупномасштабного и сложного контакта.

Колесо Mecanum, своего рода всенаправленное колесо, в последние годы нашло более широкий спектр применений в области мобильных роботов [6–9].Движение в любом направлении на ровной поверхности может быть достигнуто комбинацией трех колес Mecanum или более трех. Колесная платформа Mecanum (MWP) имеет большое значение в промышленной сфере. Кинематическая характеристика MWP является основой исследования управления движением и применения MWP. Моделирование движения виртуального прототипа — эффективный метод исследования.

Для изучения характеристик движения и мобильных характеристик MWP для всенаправленного инвалидного кресла была создана имитационная модель виртуального прототипа с использованием программного обеспечения SolidWorks, а виртуальное моделирование прототипа было выполнено в RecurDyn до того, как будет изготовлен физический прототип MWP. .Результаты моделирования поспособствовали улучшению конструкции прототипа. В этой статье представлен опыт моделирования для MWP с помощью RecurDyn, а также подробно описаны этапы моделирования и моменты, требующие внимания. В среде моделирования RecurDyn имитационный анализ проблемы столкновения контактов может быть выполнен быстро и эффективно. Рабочее состояние мобильной системы в реальных условиях можно смоделировать с помощью различных экспериментов с виртуальным моделированием.Результаты моделирования могут использоваться для прогнозирования производительности платформы и оценки рациональности конструкции, а качество конструкции может быть улучшено в соответствии с выявленной проблемой.

2. Имитационная модель виртуального прототипа платформы

Функция 3D-моделирования в RecurDyn относительно слабая, поэтому виртуальный прототип 3D-модели для моделирования в RecurDyn обычно разрабатывается в другом программном обеспечении САПР с целью повышения эффективности моделирования. SolidWorks, интерактивное программное обеспечение CAD / CAE / CAM, мощно выполняет функции проектирования и моделирования и широко применяется в области проектирования.В этой статье проектирование, моделирование и сборка MWP были выполнены SolidWorks. Перед импортом в RecurDyn модель следует упростить, чтобы уменьшить объем обработки данных и повысить эффективность расчетов при моделировании. Некоторые части, такие как подшипники, болты и электрические компоненты, которые оказывают меньшее влияние на моделирование, можно игнорировать, а основной предмет, необходимый для изучения, должен быть сохранен.

2.1. Трехмерная модель виртуального прототипа

MWP в этой статье в основном состоит из четырех частей: основного корпуса, двух коромысел, четырех колес Mecanum и дифференциального механизма, как показано на рисунке 1 [10].Такие компоненты, как аккумулятор и электрические компоненты, размещены в основном корпусе. Коромысла и дифференциальный механизм используются для объединения основного корпуса и четырех колес Mecanum, которые приводятся в движение независимо. Благодаря дифференциальному механизму платформа может пассивно адаптироваться к местности, четыре колеса могут поддерживать контакт с землей одновременно, а нагрузка на четыре колеса примерно одинакова. Платформа может перемещаться во всех направлениях с помощью колес Mecanum. В этом документе имитационная модель виртуального прототипа MWP разработана SolidWorks.

2.2. Создание соединений и движений

Упрощенную модель сборки можно импортировать в RecurDyn в формате Parasolid. В системе RecurDyn необходимо изменить материал и название частей и компонентов, а также определить соединения между частями.

Точность анализа моделирования зависит от точности создания вышеуказанных соединений. Соединения между компонентами создаются с целью подтверждения конструктивного и кинематического отношения частей.В этой имитационной модели создано 103 шарнирных соединения и 4 сферических соединения. 96 из этих поворотных шарниров находятся между роликами и осями роликов колеса Mecanum. 4 сферических шарнира находятся в дифференциальном механизме.

Путем определения соответствующих функций движения поворотных шарниров между колесами Mecanum и коромыслами виртуальный прототип может быть включен для моделирования движения в соответствии с заранее определенными требованиями. Функции STEP используются для добавления движения в систему, чтобы предотвратить нарушение моделирования системы, вызванное резким изменением скорости в процессе моделирования.Функция STEP, встроенная полиномиальная аппроксимация 3-го порядка программного обеспечения ступенчатой ​​функции, обычно используемая для определения относительно плавной функции STEP, подходит для плавной загрузки скоростного привода для платформы.

2.3. Создание контактов и настройка параметров

Несмотря на то, что стыки между частями имитационной модели были созданы и указанные выше настройки были выполнены, вся модель будет проникать в землю под действием силы тяжести. Чтобы смоделировать движение платформы, необходимо добавить контакты между роликами колес и землей.96 контактов создаются за один раз с помощью вторичного инструмента разработки «ProcessNet» для определения вышеуказанных контактов. Такой метод создания контактов позволяет сэкономить время работы и повысить эффективность моделирования. Когда соединения, движения и контакты были определены, имитационная модель MWP была настроена, как показано на рисунке 2. Согласно теории контактов Герца, параметры контакта определяются следующим образом: коэффициент пружины составляет 1400 Н / мм, коэффициент демпфирования 10, коэффициент динамического трения 0.5 показатель жесткости равен 2,2, материал внешнего слоя ролика задан как резина, а остальные параметры сохранены в системном значении по умолчанию, как показано на рисунке 3.

.

кинематических формул — формулы, определения и решенные примеры

    • Классы
      • Класс 1-3
      • Класс 4-5
      • Класс 6-10
      • Класс 11-12
    • КОНКУРСНЫЙ ЭКЗАМЕН
      • BNAT 000 NC
        • 000 NC Книги
          • Книги NCERT для класса 5
          • Книги NCERT для класса 6
          • Книги NCERT для класса 7
          • Книги NCERT для класса 8
          • Книги NCERT для класса 9
          • Книги NCERT для класса 10
          • Книги NCERT для класса 11
          • Книги NCERT для класса 12
        • NCERT Exemplar
          • NCERT Exemplar Class 8
          • NCERT Exemplar Class 9
          • NCERT Exemplar Class 10
          • NCERT Exemplar Class 11
          • NCERT 9000 9000
          • NCERT Exemplar Class
            • Решения RS Aggarwal, класс 12
            • Решения RS Aggarwal, класс 11
            • Решения RS Aggarwal, класс 10
            • 90 003 Решения RS Aggarwal класса 9

            • Решения RS Aggarwal класса 8
            • Решения RS Aggarwal класса 7
            • Решения RS Aggarwal класса 6
          • Решения RD Sharma
            • RD Sharma Class 6 Решения
            • Решения RD Sharma
            • Решения RD Sharma Class 8

            • Решения RD Sharma Class 9
            • Решения RD Sharma Class 10
            • Решения RD Sharma Class 11
            • Решения RD Sharma Class 12
          • PHYSICS
            • Механика
            • Оптика
            • Термодинамика Электромагнетизм
          • ХИМИЯ
            • Органическая химия
            • Неорганическая химия
            • Периодическая таблица
          • MATHS
            • Теорема Пифагора
            • 0004

            • 000300030004
            • Простые числа
            • Взаимосвязи и функции
            • Последовательности и серии
            • Таблицы умножения
            • Детерминанты и матрицы
            • Прибыль и убыток
            • Полиномиальные уравнения
            • Деление фракций
          • 000
          • 000
          • 000
          • 000
          • 000
          • 000 Microology
          • 000
          • 000 Microology
          • 000 BIOG3000
              FORMULAS

              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000 PBS4000
              • 000300030002 Примеры калькуляторов химии
              • Класс 6

              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 11
              • Образцы документов CBSE чел для класса 12
            • CBSE Контрольный документ за предыдущий год
              • CBSE Контрольный документ за предыдущий год Класс 10
              • Контрольный документ за предыдущий год CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Class 11 Physics
              • Решения HC Verma, класс 12, физика
            • Решения Лакмира Сингха
              • Решения Лакмира Сингха, класс 9
              • Решения Лакмира Сингха, класс 10
              • Решения Лакмира Сингха, класс 8
            • Заметки CBSE
            • , класс
                CBSE Notes

                  Примечания CBSE класса 7
                • Примечания CBSE класса 8
                • Примечания CBSE класса 9
                • Примечания CBSE класса 10
                • Примечания CBSE класса 11
                • Примечания CBSE класса 12
              • Примечания к редакции CBSE
                • Примечания к редакции
                • CBSE
                • Примечания к редакции класса 10 CBSE
                • Примечания к редакции класса 11 CBSE 9000 4
                • Примечания к редакции класса 12 CBSE
              • Дополнительные вопросы CBSE
                • Дополнительные вопросы по математике класса 8 CBSE
                • Дополнительные вопросы по науке 8 класса CBSE
                • Дополнительные вопросы по математике класса 9 CBSE
                • Дополнительные вопросы по науке класса 9 CBSE
                • Дополнительные вопросы по математике для класса 10

                • Дополнительные вопросы по науке, класс 10 по CBSE
              • CBSE, класс
                • , класс 3
                • , класс 4
                • , класс 5
                • , класс 6
                • , класс 7
                • , класс 8
                • , класс 9 Класс 10
                • Класс 11
                • Класс 12
              • Учебные решения
            • Решения NCERT
              • Решения NCERT для класса 11
                • Решения NCERT для класса 11 по физике
                • Решения NCERT для класса 11 Химия
                • Решения для биологии класса 11

                • Решения NCERT для математики класса 11
                • 9 0003 NCERT Solutions Class 11 Accountancy

                • NCERT Solutions Class 11 Business Studies
                • NCERT Solutions Class 11 Economics
                • NCERT Solutions Class 11 Statistics
                • NCERT Solutions Class 11 Commerce
              • NCERT Solutions For Class 12
                • NCERT Solutions For Класс 12 по физике
                • Решения NCERT для химии класса 12
                • Решения NCERT для класса 12 по биологии
                • Решения NCERT для класса 12 по математике
                • Решения NCERT Класс 12 Бухгалтерия
                • Решения NCERT, класс 12, бизнес-исследования
                • Решения NCERT, класс 12 Экономика
                • NCERT Solutions Class 12 Accountancy Part 1
                • NCERT Solutions Class 12 Accountancy Part 2
                • NCERT Solutions Class 12 Micro-Economics
                • NCERT Solutions Class 12 Commerce
                • NCERT Solutions Class 12 Macro-Economics
              • NCERT Solutions For Класс 4
                • Решения NCERT для математики класса 4
                • Решения NCERT для класса 4 EVS
              • Решения NCERT для класса 5
                • Решения NCERT для математики класса 5
                • Решения NCERT для класса 5 EVS
              • Решения NCERT для класса 6
                • Решения NCERT для математики класса 6
                • Решения NCERT для науки класса 6
                • Решения NCERT для социальных наук класса 6
                • Решения NCERT для класса 6 Английский
              • Решения NCERT для класса 7
                • Решения NCERT для класса 7 Математика
                • Решения NCERT для класса 7 Наука
                • Решения NCERT для класса 7 по социальным наукам
                • Решения NCERT для класса 7 Английский
              • Решения NCERT для класса 8
                • Решения NCERT для класса 8 Математика
                • Решения NCERT для класса 8 Science
                • Решения NCERT для социальных наук 8 класса
                • Решение NCERT нс для класса 8 Английский
              • Решения NCERT для класса 9

        .

        Простая двухмерная кинематическая модель рулевого управления и анимация — Обмен файлами

        ———————————— ——————————————-

        Это файл Readme для простого 2D кинематического движения рулевого транспортного средства и визуализации, реализованных в Simulink от Matlab. Никаких специальных библиотек или дополнительных наборов инструментов не требуется.

        Эта модель Simulink решает положение XY фиксированного ландшафта простого кинематического движения транспортного средства и визуализирует результат с использованием графики Matlab.Базовый временной шаг симуляции модели Simulink равен h_fixed = 0,05 (с) или 50 мс. На ноутбуке Dell Inspiron 2 ГГц эта модель обеспечивает работу почти в реальном времени с частотой кадров анимации от 20 до 30 кадров в секунду.

        Взаимосвязь Аккермана в рулевом управлении delta_Ack = L / R является приближением для транспортного средства с длиной колесной базы L и шириной колеи W, которое поворачивается без проскальзывания по окружности постоянного радиуса на низкой скорости.

        Отношения Аккермана представлены в тексте Гиллеспи 1992 года на странице 186, в тексте Милликена и Милликена 1995 года на странице 128 или в тексте Вонга 2008 года.364. Однако ни один из этих текстов не дает адекватного и краткого описания фиксированной скорости тела, преобразованной в инерционные или фиксированные на местности координаты SAE XY. Рукописные заметки, представленные здесь, резюмируют полное развитие кинематического уравнения.

        протестированных версий программного обеспечения:

        ————————-

        Эта модель была разработана и протестирована с использованием Matlab R2014 и R2015 и должна работать с большинством других версий. S-функция анимации — это модифицированная версия s-функции m-файла уровня 1 из примера Mathworks, представленного в sanim.м.

        Запись кадров анимации .jpeg на диск в каждом интервале анимации значительно замедляет моделирование. Установите количество кадров анимации в секунду, anim_fps, в setup.m и повторно запустите setup.m. Не забудьте отключить службы синхронизации файлов, чтобы не синхронизировать все новые файлы изображений.

        Начало работы:

        ————————-

        Для начала разархивируйте файл .zip, измените каталоги в папке и запустите setup.m

        в командной строке Matlb. Это очистит рабочее пространство, а затем заполнит его необходимыми переменными для запуска модели Simulink и связанной анимации.Он также откроет файл модели Simulink. Нажмите Play или Simulation | Выполните, чтобы выполнить модель Simulink. Светло-синий блок s-function вызовет окно 2D-анимационного рисунка и отобразит управляемое транспортное средство с кадрами anim_fps в секунду.

        ————————————————- ——————————

        Список файлов дистрибутива:

        ————————————————- ——————————

        [00_Readme.mdc.txt] — это файл

        [настройка.m] — сначала запустите это, это вызовет Simulink, затем нажмите play, чтобы смоделировать транспортное средство

        [createAviMovieFromAnimationSequence.m] — вспомогательный скрипт m-файла для преобразования последовательности изображений .jpg в Avi с помощью функции Matlab VideoWriter ().

        [graphical_development.m] — вспомогательный скрипт m-файла, полезный для разработки графики s-функции

        [sanim_XY_vehicle_viz.m] — s-функция Simulink m-файла, которая отображает графические объекты Matlab через каждый интервал анимации (устанавливается параметром anim_fps в setup.м) для создания анимации.

        [veh_object2.m] — поддержка функции m-файла для создания вершин и граней для графических объектов транспортных средств и шин

        [vehicle_animation_sim.jpg] — снимок экрана рабочего стола, показывающий модель Simulink и окно анимации

        [vehicle_animation_sim.pdf] — распечатка блок-схемы Simulink на случай, если вы не можете открыть Simulink

        [vehicle_animation_sim.slx] — модель Matlab / Simulink R2015b, которая выражает неголономически ограниченные (подвижные) скорости ЦТ и решает положение транспортного средства как функцию времени.

        [. \ Anim_sequences] — папка, в которой хранятся файлы последовательности кадров анимации .jpg; измените это в sanim_XY_vehicle_viz.m

        [. \ Documentation \ Compere_handwritten_notes_2D_Patch_Vehicle_and_Tire_Objects_Dec_2015.pdf] — пример структуры для определения граней и вершин графических объектов патча Matlab, см. Veh_object2.m для реализации

        [. \ Documentation \ Compere_handwritten_notes_kinematic_2D_vehicle_steering_model_Dec_2015.pdf] — рукописные заметки Compere с уравнениями, подходящими для определения положения управляемого транспортного средства в фиксированной на местности XY-рамке.

        [. \ Documentation \ Lecture_01_A Simple 2D Kinematic Steering Model.pdf] — краткое описание модели и интересные результаты с анимационными следами из точек ‘o’ и ‘g’.

        ————————————————- ——————————

        Ссылки на Texxtbook:

        ————————————————- ——————————

        (1) Томас Гиллеспи, Основы динамики транспортного средства, SAE, 1992

        (2) Милликен и Милликен, Race Car Vehicle Dynamics, SAE, 2005

        (3) Дж.Ю. Вонг, Теория наземных транспортных средств, 4-е изд., Wiley, 2008 г.

        ————————————

        Марк Компере, [email protected]

        создано: 11 янв 2016

        изменено: 17 января 2016 г.

        ————————————

        .

        Список кинематических уравнений в физике (Читать)

        list of kinematic equations in physics Кинематические уравнения в физике
        Кинематика — это раздел механики, имеющий дело с движением тел без привязки к массе или силе. В физике есть три кинематических уравнения для тел, движущихся с равномерным ускорением. Эти уравнения связывают начальную скорость, конечную скорость, ускорение, время и расстояние, пройденное движущимся телом.
        Для вывода уравнений движения мы предполагаем, что движение идет по прямой.Следовательно, мы рассматриваем только величину смещений, скоростей и ускорений.

        Список кинематических уравнений в физике

        Вывод первого уравнения движения графическим методом

        Рассмотрим тело, движущееся с начальной скоростью Vi по прямой с равномерным ускорением a. Его скорость становится равной Vf через время t. Движение тела описывается графиком скорость-время, представленным линией AB. Наклон линии AB — это ускорение a. Общее расстояние, пройденное телом, показано заштрихованной областью под линией AB.Из этого графика легко получить кинематические уравнения движения.

        First equation of motion speed time graph График скорости движения тела и времени показан на рисунке. Наклон линии AB дает ускорение тела.

        first equation of motion

        См. Также: Законы движения Ньютона

        Вывод второго уравнения движения графическим методом

        Рассмотрим тело движется с начальной скоростью Vi по прямой с равномерным ускорением a. Пусть его скорость становится «Vf» после времени t.Движение тела описывается графиком скорость-время линией AB, как показано на рисунке ниже. Общее расстояние «S», пройденное телом, равно общей площади OABD, указанной на графике.

        speed time graph

        Это называется 2-м уравнением движения.

        second equation of motion derivation by graphical method

        Третье (3-е) уравнение движения с помощью графического метода

        Рассмотрим тело, движущееся с начальной скоростью «vi» по прямой с равномерным ускорением «a». Пусть его скорость через время «t» станет Vf.Движение тела описывается графиком скорость-время, как показано на рисунке линией AB. Общее расстояние S, пройденное телом, выражается общей площадью OABD под графиком.

        graph for kinematic equations formula

        3rd equation of motion formula by graphical method

        Это 3-е уравнение движения.
        Условия, при которых могут применяться эти уравнения:
        1: Движение должно быть одномерным.
        2: Ускорение должно быть равномерным.
        3: Система отсчета должна быть инерциальной.
        Связанные темы:

        .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *