Классификация кпп: Виды коробок передач автомобиля и как они устроены

Содержание

Классификация коробок передач

Классификация коробок передач по принципу работы трансмиссии коробки передач бывают механические и гидродинамические.

Классификация коробок передач по числу валов:

—         2х вальные;

—         3х вальные;

—         Многовальные (планитарные коробки передач или 2х, 3х поточные механические коробки).

Классификация коробок передач

Классификация коробок передач по числу передач и диапазонов бывают с 1м или 2мя диапазонами.

Классификация коробок передач по способу переключения передач с разрывом потока мощности и без разрыва потока мощности.

Коробки передач с разрывом потока мощности – способ переключения передач скользящими шестернями, зубчатыми или кулачковыми муфтами, синхронизаторами.

Коробки передач без разрыва потока мощности – переключение передач фрикционными муфтами, тракторы, audi TT 3,2 Quattro с двумя сцеплениями.

Классификация коробок передач по способу управления коробки передач бывают с ручным и автоматическим управлением.

Классификация коробок передач по способу смазки, с принудительной смазкой (МАЗ, КРАЗ), разбрызгивание.

Классификация коробок передач по способу перемещения осей – с неподвижными и с подвижными осями (планетарные).

Классификация коробок передач по числу степеней свободы – с 2мя и с 3мя степенями свободы.

Коробки передач должны иметь достаточное число передач с правильно выбранными передаточными числами, высокий КПД, небольшие размеры и вес (массу).

Коробки передач должны быть не сложными по конструкции, надежными и износостойкими в работе, простыми в управлении, удобными при обслуживании и ремонте.

Расчет коробки передач производится в следующем порядке:

1) Задаются числом передач и выбирают схему коробки передач;

2) Распределяют общее передаточное число трансмиссии;

3) Определяют передаточные числа коробки  передач на различных передачах;

4) Устанавливают число зубьев шестерен, вычисляют их модуль и основные размеры;

5) Вычерчивают в масштабе компоновочную схему коробки передач;

6) Определяют силы действия на валы и реакции их опор;

7) Рассчитывают валы на прочность и жесткость;

8) Подбирают подшипники.

При выбранной схеме коробки передач, ее основные параметры зависят от параметров шестерен, которые определяют расчетом на прочность и износ и уточняются при стендовых и дорожных испытаниях. Для коробки передач с неподвижными валами величина межцентрового расстояния ориентировочно определяется по величине максимального крутящего момента двигателя

Коробка передач — Энциклопедия журнала «За рулем»

Коробка передач, коробка переключения передач, коробка перемены передач (устаревшее), КПП, КП. Механизм, часть трансмиссии автомобиля или мотоцикла, станка или иного промышленного механизма, предназначенный для изменения частоты вращения приводного вала и крутящего момента, а следовательно, и тягового усилия на ведущих колесах автомобиля и скоростей движения, для обеспечения движения задним ходом, а также для длительного разобщения двигателя от ведущих колес при работе двигателя на холостом ходу.

Назначение коробок передач

Чаще всего коробки передач применяются на транспортных средствах с двигателями внутреннего сгорания, поскольку ДВС не обладают необходимой для плавного изменения скорости движения гибкостью. Диапазон частоты вращения ведущих колес автомобиля простирается от 0, до 1800 об/мин (максимальное значение может быть больше у спортивных автомобилей и мотоциклов). Диапазон частоты вращения коленчатого вала поршневого ДВС — от 500-800, до 5-9 тысяч об/мин. КП обеспечивает плавное увеличение или уменьшение скорости движения при оптимальном использовании максимального крутящего момента двигателя, который достигается обычно при средней частоте оборотов коленчатого вала поршневого двигателя (около 3-4 тысячах об/мин). Помимо этого КП позволяет менять направление движения автомобиля (для этого в коробка оснащена механизмом заднего хода) и отключать двигатель от механизмов трансмиссии во время длительных стоянок с работающим мотором.

В транспортных средствах с паровыми и электрическими двигателями КП обычно не применяется, поскольку двигатели этого типа обладают практически идеальной характеристикой. КП не применяется на простейших велосипедах, но на спортивные и дорогие дорожные модели устанавливаются специальные устройства — открытые звездочные с механизмом перевода цепи или планетарные, встроенные в ступицу заднего колеса, которые выполняют функции КП. В токарных, фрезерных, сверлильных станках КП используются для изменения частоты вращения шпинделя, чтобы обеспечить оптимальный режим обработки металла.

Коробка передач(ИЖ-2126):
1 – первичный вал;
2 – картер сцепления;
3 – задний подшипник первичного вала;
4 – болт крепления верхней крышки;
5 – верхняя крышка;
6 – передний подшипник вторичного вала;
7 – блокирующее кольцо синхронизатора включения передачи;
8 – ступица III-IV передач;
9 – муфта III-IV передач;
10 – шестерня III передачи;
11 – стопорное кольцо;
12 – ступица V передачи;
13 – муфта V передачи;
14 – шестерня V передачи;
15 – шестерня II передачи;
16 – роликовый подшипник;
17 – шпонка;
18 – муфта-шестерня заднего хода;
19 – блокирующее кольцо синхронизатора включения II передачи;
20 – ступица I-II передач;
21 – шестерня I передачи;
22 – стержень рычага переключения передач;
23 – чехол рычага;
24 – рычаг переключения передач;
25 – задний подшипник вторичного вала;
26 – фланец эластичной муфты карданной передачи;
27 – ведущая шестерня привода спидометра;
28 – сальник вторичного вала;
29 – гайка фланца эластичной муфты;
30 – центрирующее кольцо;
31 – вторичный вал;
32 – уплотнитель;
33 – грязеотражатель;
34 – шайба;
35 – задний болт промежуточного вала;
36 – болт крепления кронштейна задней опоры силового агрегата;
37 – гайка шпильки крепления задней крышки;
38 – задний подшипник промежуточного вала;
39 – задняя крышка коробки передач;
40 – прокладка задней крышки;
41 – игольчатый подшипник;
42 – промежуточная шестерня заднего хода;
43 – ось промежуточной шестерни;
44 – промежуточный вал;
45 – картер коробки передач;
46 – передний подшипник промежуточного вала;
47 – болт переднего подшипника промежуточного вала.

Требования, предъявляемые к коробке передач

К коробке передач предъявляются следующие требования:
— обеспечение оптимальных тягово-скоростных свойств автомобиля при заданной характеристике двигателя;
— бесшумность в работе и переключении передач;
— легкость управления;
— высокий КПД.
С появлением первых моторных экипажей появилась необходимость применения устройств для изменения передаточного отношения от двигателя к колесам. Применявшиеся вначале ременные передачи, скопированные со станков, оказались несостоятельными и очень скоро стали вытесняться зубчатыми передачами. Первой подобной коробкой, получившей широкое распространение на автомобилях, была коробка передач со скользящими шестернями, которые могли перемещаться на квадратном или шлицевом вале, для того чтобы входить в зацепление с шестернями, установленными на другом, параллельном первому, вале. Она сконструирована инженером Эмилем Левассором во Франции и в 1891 г. была установлена на автомобиле «Панар-Левассор».

Классификация коробок передач

Коробка передач.

Коробка передач



Назначение и основные функции коробок передач

Коробка передач предназначена для изменения крутящего момента, передаваемого от двигателя на ведущие колеса по величине и направлению. Это позволяет обеспечить оптимальную силу тяги и скорость движения автомобиля, а также движение задним ходом.

Кроме того, коробка передач позволяет разобщать коленчатый вал двигателя от ведущих колес во время остановки или стоянки автомобиля или при движении накатом с работающим двигателем.

От коробки передач может производиться отбор мощности на привод дополнительного оборудования.

Преобразующие свойства коробки передач характеризуются величиной передаточных чисел.

Передаточным числом называют отношение числа зубьев ведомого зубчатого колеса к числу зубьев ведущего зубчатого колеса или отношение частоты вращения ведущего зубчатого колеса к частоте вращения ведомого колеса. Общее передаточное число какой-либо передачи определяется как произведение передаточных чисел всех пар зубчатых колес, участвующих в передаче крутящего момента на данной передаче, или как отношение частоты вращения входного вала (ωвх) к частоте вращения выходного вала (ωвых):

Uкп i = ωвх/ ωвых i.

Изменение передаточного отношения позволяет:

  • при постоянной мощности двигателя увеличивать силу тяги на ведущих колесах пропорционально увеличению сил сопротивления движению и тем самым обеспечивать проходимость и улучшать топливную экономичность автомобиля;
  • двигаться с малыми скоростями, которые не могут быть обеспечены двигателем внутреннего сгорания, с максимальными или заданными скоростями движения;
  • обеспечивать интенсивный разгон автомобиля.

Высокие тяговые качества и экономичность автомобиля обеспечиваются заданным диапазоном и плотностью ряда передаточных чисел коробки передач.

Диапазоном передаточных чисел называется отношение общего передаточного числа низшей передачи к общему передаточному числу высшей передачи, который на современных автомобилях высокой проходимости может быть от 10 до 13.

Отношение передаточных чисел соседних передач называется плотностью ряда передаточных чисел. Чем больше число передач, тем выше плотность ряда.

Увеличение числа передач, с одной стороны, сопровождается лучшим использованием мощности двигателя, повышением топливной экономичности, с другой стороны, увеличением массы, усложнением конструкции и снижением надежности, а также затруднением выбора оптимальной для данного режима движения передачи.

***



Классификация коробок передач

По характеру изменения передаточных чисел коробки передач подразделяются на бесступенчатые, ступенчатые и комбинированные.
Бесступенчатые коробки передач применяются в бесступенчатых трансмиссиях. В качестве бесступенчатых коробок передач на автомобилях применяют гидравлические трансформаторы, вариаторы, гидрообъемные и электрические передачи. Они способны плавно изменять величину крутящего момента в автоматическом режиме.

Однако диапазон изменения передаточного числа у таких коробок передач невелик, поэтому чаще их применяют в сочетании с механическими ступенчатыми коробками передач для расширения диапазона передаточных чисел. Такие коробки передач называются комбинированными.

Механические ступенчатые коробки передач отличаются простотой, надежностью и удобством в техническом уходе, но с их помощью можно изменять крутящий момент лишь ступенчато (скачкообразно). Это сопряжено с определенными динамическими нагрузками на двигатель и трансмиссию, особенно, если управляет автомобилем водитель недостаточной квалификации.

В механических ступенчатых коробках передач выбор оптимального передаточного числа (оптимальной передачи) осуществляется водителем вручную. Каждая передача способна обеспечивать движение автомобиля в узком интервале тяговых усилий, передаваемых ведущим колесам, определяемых частотами вращения коленчатого вала, близкими к номинальной частоте.

Тем не менее, в настоящее время ступенчатые коробки передач широко применяются на многих автомобилях.

К отдельному типу механических КПП относятся роботизированные коробки передач, или коробки-роботы. От обычных ступенчатых механических коробок передач классического типа их отличает то, что управление сцеплением и переключением передач осуществляется автоматически при помощи специальных сервоустройств и приводов, которые, чаще всего, управляются электроникой.

Такие коробки сочетают в себе достоинства автоматических КПП, освобождая водителя от обязанностей по управлению, и механических КПП, отличающихся простотой конструкции, низкой стоимостью, надежностью и способствующих топливной экономичности и динамичности автомобиля.

***

Ступенчатые коробки передач



Главная страница
Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

назначение, устройство, виды и перспективы развития

Создание двигателя внутреннего сгорания способствовало развитию всех типов транспорта и даже появлению новых видов. Первые автомобили именовались самобеглыми колясками и имели достаточно примитивную конструкцию. Передача крутящего момента от силового агрегата на ведущие колеса происходила при помощи очень ненадежного ременного, а позднее и цепного привода.

КПП - сложное устройство

Двигатели внутреннего сгорания, используемые на транспортных средствах, имеют относительно небольшой рабочий диапазон. При малой частоте вращения коленчатого вала силовой агрегат не развивает достаточной мощности и под нагрузкой просто глохнет. При больших оборотах резко возрастают нагрузки на детали, и мотор может просто пойти вразнос. Коробка перемены передач призвана обеспечить оптимальный режим работы двигателя в разных условиях.

Этот агрегат представляет собой редуктор, позволяющий в широком диапазоне изменять частоту оборотов и крутящий момент на ведущих колесах автомобиля. Такие механизмы не нужны на транспортных средствах, оснащенных электрическими и паровыми двигателями.

Тяговые характеристики данных силовых агрегатов позволяют обходиться без дополнительных устройств. В идеале двигатель может быть встроен непосредственно в колесо, в настоящее время уже существуют промышленные образцы приводов такого рода.

привод на колеса

Термин коробка перемены передач в настоящее время практически не используется, вместо него применяется более современное название: коробка переключения передач.

Помимо основного назначения этот механизм выполняет еще ряд функций:

  • обеспечение реверса, иными словами, движения задним ходом;
  • разобщение работающего силового агрегата и трансмиссии во время длительной остановки или стоянки;
  • обеспечение условий для запуска двигателя.

Применение коробки переключения передач позволяет водителю автомобиля выбирать наиболее оптимальный режим работы силового агрегата в зависимости от внешних условий.

Проектированием и серийным изготовлением такого рода механизмов занимаются в основном производители автомобилей. Кроме того, в мире существует ряд компаний, специализацией которых является производство элементов трансмиссий и, в частности, коробок переключения передач:

  • Allison Engine Company;
  • BorgWarner Inc;
  • Delphi Corporation;
  • Robert Bosch GmbH;
  • Wulf Gaertner Autoparts AG;
  • ZF Friedrichshafen AG.

Указанные компании обычно выполняют заказы автопроизводителей, осуществляя при этом серийное изготовление оригинальных и лицензионных механизмов. Нередко они осуществляют опытно-конструкторские работы и участвуют в совместных проектах корпораций, занимаясь доводкой техники. Продукция данных производителей отличается высочайшим качеством и надежностью.

Классификация коробок переключения передач

В процессе развития автомобилестроения инженерами были предложены несколько типов механизмов, реализующих разные принципы действия и способы управления. Общепринятая в инженерной среде классификация коробок использует названные выше признаки в качестве отличительных:

По принципу работы коробки переключения передач делятся на три вида:

  • ступенчатые;
  • бесступенчатые;
  • комбинированные.

По способу управления устройством различают:

  • механические;
  • автоматические;
  • роботизированные.

Данная классификация не включает в себя некоторые типы коробок переключения передач, которые в силу ряда обстоятельств не получили широкого распространения.

Так, некоторые автомобили, предназначенные для людей с ограниченными физическими возможностями, оснащались полуавтоматическими трансмиссиями. По сути это обычная коробка с ручным переключением передач, агрегатированная с автоматизированным сцеплением.

В настоящее время многие автопроизводители в рамках экологических программ выпускают автомобили с гибридными силовыми установками. Конструкций таких машин достаточно много, используются самые разные схемы компоновки. В некоторых из них присутствуют коробки переключения передач, в других же в качестве привода используются электрические двигатели, не нуждающиеся в дополнительных устройствах для передачи крутящего момента.

Видео — виды коробок переключения передач автомобиля, их плюсы и минусы:

Подавляющее большинство коробок переключения передач представляют собой редуктор, с несколькими парами шестеренок. Изменение передаточного числа в них происходит дискретно, а число пар соответствует количеству ступеней.

В свою очередь, существует две основных конструктивные схемы механизмов такого рода: соосные и планетарные. Первая компоновка в основном применяется в механических коробках, а вторая – в автоматических.

Бесступенчатые механизмы называются вариаторами, в них изменение частоты вращения ведомого вала по отношению к ведущему происходит плавно без рывков. В них реализуется принцип передачи крутящего момента через промежуточный элемент, используя силу трения. Соответственно вариаторы классифицируются по типу передающего звена: клиноременные, клиноцепные, роликовые и шариковые передачи.

Механические

Агрегаты такого типа получили наибольшее распространение в Старом Свете ими оснащено около 80% от общего количества транспортных средств. В технических описаниях автомобилей механические коробки часто обозначаются аббревиатурой МКПП. Они отличаются простотой и высокой надежностью конструкции. Подробное описание принципа действия и устройства механической коробки можно найти здесь.

Вкратце работу агрегата можно описать следующим образом: на маховике двигателя установлен механизм сцепления. Ведомый диск его имеет возможность перемещаться вдоль ведущего вала в шлицах разной формы. Сцепление обеспечивает прерывание потока мощности в момент переключения передачи. Через первичный вал крутящий момент приводит в действие через постоянную главную передачу ведущий вал коробки.

На нем установлены и жестко зафиксированы шестерни по количеству передач и еще одна для заднего хода. В постоянном зацеплении с ними находятся соответствующие детали ведомого вала. Они свободно вращаются на подшипниках, а между ними имеются стопорные кольца с синхронизаторами. Эти детали выравнивают скорости вращения ведущих и ведомых шестерней между собой и обеспечивают зацепление при включении определенной передачи.

ручка переключения коробки передач

Перемещение муфты производится специальными вилками, которые приводятся в действие специальным механизмом. Защитой от одновременного включения двух передач является замок, исключающий перемещение других устройств. Водитель осуществляет управление работой коробки при помощи специального рычага, который может устанавливаться в разных точках салона:

  • на полу;
  • на центральной консоли;
  • на рулевой колонке;
  • на панели приборов.

Передача управляющего воздействия на МКПП может передаваться непосредственно либо через специальные тросовые механизмы или кулисы.

Роботизированные

Развитие электроники и появление достаточно надежных процессоров и контролеров сделало возможным их применение в выборе режимов работы трансмиссии автомобилей. Роботизированные коробки переключения передач представляет собой проверенную временем и надежную механику, управление которой осуществляется при помощи электронного блока.

 

Подробное описание устройства таких коробок и принципа их действия можно найти здесь. Отработка методики осуществлялась на болидах, специально созданных для участия в соревнованиях Формулы -1. В данных автомобилях сервоприводы управляют работой сцепления и переключениями передач. Время перемены передачи в них составляет от 0,01 до 0,02 с.

Существуют два способа управления функционированием роботизированной коробки передач: гидравлический и электрический. Первый вариант обеспечивает минимальное время срабатывания, но более сложен в изготовлении. Используется преимущественно на дорогих автомобилях бизнес-класса. Электрические сервомоторы применяются на бюджетных моделях и не могут похвастаться значительным быстродействием.

Основное достоинство роботизированных коробок переключения передач: жесткая механическая связь между двигателем и ведущими колесами. В сравнении с автоматическими коробками данный тип трансмиссии обладает лучшими характеристиками и меньшими потерями. Основным недостатком ее является высокая сложность и соответственно стоимость механизма.

Автоматические

Общепринятые обозначения агрегатов такого рода АКП или АКПП, они представляют собой целый комплекс устройств. В его состав входит гидромеханическое сцепление и планетарный редуктор. Данная конструкция позволяет создавать разные передаточные соотношения в зависимости от выбранного режима работы. Развернутое описание устройства и принципа работы АКП можно найти здесь.

Планетарный механизм состоит из двух шестерней – центральной и внешней, а также расположенных между ними сателлитов. Они устанавливаются на специальном узле – водиле. Детали могут фиксироваться относительно корпуса коробки при помощи специальных механизмов, по устройству аналогичных фрикционам сцепления или ленточным тормозам.

Управление работой АКПП осуществляется при помощи гидроприводов, при этом выбор режима производится селектором. Педаль акселератора на таких автомобилях не имеет прямой механической связи с дроссельной заслонкой двигателя. При нажатии на нее происходит изменение положения клапана в гидросистеме, которая управляет работой коробки.

Видео — как устроена автоматическая коробка передач:

На современных АКП выбор режима выполняется процессором, который способен адаптироваться под манеру вождения. Это позволило несколько уменьшить негативные стороны данного типа коробок переключения передач.

Так, резкое нажатие на педаль газа вызывает включение режима кикдаун, при котором переход на повышенную передачу происходит при значительно больших оборотах коленчатого вала. Разгонная динамика при этом значительно возрастает.

Вариаторы

Бесступенчатая передача обеспечивает силовому агрегату возможность работы на постоянных оборотах. Таким образом, достигаются максимальные показатели по мощности, экономичности или крутящему моменту в зависимости от выбранного режима.

Передача усилия от двигателя на ведущие колеса осуществляется без разрывов потока. С полным и точным описанием конструкции вариатора и принципа действия можно ознакомиться здесь.

Название этого устройства происходит от английского слова variable – переменная, которое входит в наименование конструкции. CVT расшифровывается как непрерывная переменная трансмиссия, что наилучшим образом характеризует ее работы. Предусмотренное конструкцией сцепление используется исключительно для запуска и обеспечения работы двигателя во время остановки.

Существует несколько разновидностей конструкций вариаторов:

  • клиноременный;
  • клиноцепной;
  • тороидальный.

В первом устройстве передача усилия осуществляется при помощи ремня, который находится между двумя направленными своими вершинами друг к другу конусами. Расстояние между ними изменяется в простейшем устройстве под воздействием центробежной силы, а в более сложных конструкциях под управлением электронного контролера.

Видео — что такое бесступенчатая трансмиссия (вариатор):

Клиновый ремень проваливается к центру и соответственно меняется радиус зоны его соприкосновения со шкивом. Обратная картина наблюдается на другой части конструкции. В результате передаточное соотношение плавно изменяется. Клиноременные передачи используются на относительно небольших транспортных средствах скутерах.

Полимерные материалы не способны выдержать больших нагрузок, и малопригодны для автомобильных трансмиссий. Прочность клиноременной передачи увеличивается за счет использования пакета стальных пластин особой формы с вырезами, через которые пропущены синтетические соединительные элементы. Такие элементы применяются даже на относительно небольших кроссоверах модели Honda H-RV.

Большие усилия могут передавать торовые вариаторы, разработанные инженерами компании Ниссан. Данное устройство состоит из двух конусов с вогнутой поверхностью, находящихся на одной оси. Один из них является ведущим, а другой соответственно ведомым. Передача крутящего момента осуществляется через два ролика, которые соединяются их и образуют хорду. Наклоном этих элементов изменяются радиусы в точках соприкосновения и передаточное отношение.

Перспективы развития КПП

Объемы производства автомобилей постоянно нарастают, а продукция постоянно совершенствуется. Общие тенденции развития коробок перемены передач наглядно демонстрируют следующее:

  • Используемые конструктивные схемы усложняются и автоматизируются, яркий пример — роботизированная КПП.
  • Автоматические коробки переключения передач модернизируются для максимального снижения механических потерь — применение блокиратора.
  • Все более широкое использование вариаторов, как устройств, обеспечивающих оптимальные условия работы двигателя.

На общие тенденции развития автотранспорта оказывают большое влияние новые экологические требования и ограниченность запасов природных ресурсов. В частности, речь идет о жидких и газообразных углеводородах, которые служат сырьем для производства топлива. На смену двигателям внутреннего сгорания по логике вещей должны прийти электромоторы.

гибридный автомобиль

В настоящее время уже налажено серийное производство переходных моделей, так называемых гибридных автомобилей. Так, Lexus RX400h имеет мощный бензиновый двигатель, агрегатированный с вариатором, и два электромотора. Существуют и другие модели, где у ДВС нет прямой механической связи с ведущими колесами. В движение они приводятся электрическими двигателями.

гибридный автомобильНужна ли промывка двигателя при замене масла? Однозначного ответа нет.

Как ездить на автоматической коробке передач здесь рассказано простыми словами.

Рассчитать маршрут на автомобиле (https://voditeliauto.ru/poleznaya-informaciya/interesnoe-dlya-voditelej/raschet-rasstoyanij.html) используя кратчайший или оптимальный путь.

Видео о гибридных автомобилях:

Может заинтересовать:

гибридный автомобиль
Выбрать видеорегистратор: незаменимый гаджет для водителя

Добавить свою рекламу

гибридный автомобиль
Сканер для самостоятельной диагностики автомобиля

Добавить свою рекламу

гибридный автомобиль
Подарки для автолюбителей — что выбрать?

Добавить свою рекламу

гибридный автомобиль
Некоторые водители предпочитают видеорегистратор в виде зеркала

Добавить свою рекламу

3.3. Классификация коробок передач

1. По количеству
передач они бывают двухступенчатыми,
трех­ступенчатыми и т. д.

2. По способу
установки валов различают коробки
передач с неподвижными осями валов,
планетарные и комбинированные, имеющие
валы обоих типов. Наиболее распространены
первые кон­струкции, отличающиеся
относительной простотой, малой стоимо­стью
и высоким КПД. Планетарные коробки
передач имеют меньшие габариты и массу
и широко применяются в гидромеханических
передачах, а также в виде дополнительных
коробок передач — де­мультипликаторов.

3. Коробки передач
с неподвижными осями валов по количеству
валов делятся на двухвальные, трехвальные
и многовальные.

4. По способу
управления различают коробки передач
с прямым и преселекторным управлением.

3.4. Конструкция коробок передач

Обычная
коробка передач представляет собой
механизм, шес­терни которого образуют
зубчатые пары, которые можно тем или
иным образом поочередно включать и
выключать из работы, меняя, таким образом,
передаточные числа. Основные конструктивные
схемы коробок передач двухвальная и
трехвальная — классическая(рис.
3.2 а).
Особенностью
режима работы дорожных автомобилей
является то, что у них почти всегда можно
выделить передачу, на которой они
проходят большую, иногда подавляющую
часть пути. Преимущество трехвальных
коробок (1) наличие в них так называемой
прямой передачи, получающейся при
непосредственном соединении пер­вичного
1
и
вторичного 3
валов.
В этом случае шестерни, под­шипники
и промежуточный вал 2
практически
освобождаются от нагрузок, а первичный
и вторичный передают только крутящий
момент. Износ и шум коробки при этом
минимальны, а КПД близок к единице. (2)
относительная легкость получения
большого передаточного числа на низшей
(первой) передаче при малом межосевом
рас­стоянии. Это объясняется тем, что
передаточное число всех передач, кроме
прямой, у таких коробок образуется двумя
последовательно работающими парами
шестерен, в отличие от одной пары в
двухвальных конструкциях. Двухвальные
коробки передач (рис.
3.3)
конструктивно
проще, дешевле и имеют более высокий
КПД (только на прямой передаче трехвальная
коробка имеет более высокий КПД).Основное
преим.- простота вывода крутящего момента
на любую сторону коробки (переднюю или
заднюю или на обе сразу), что в некоторых
случаях, например при заднемоторных,
переднеприводных и пол­ноприводных
конструктивных схемах автомобилей,
предоставляет большие компоновочные
возможности. Для изменения направления
крутящего момента и обеспечения
возможности движения автомобиля задним
ходом между шестернями разных валов
вводят одну (рис.
3.2 а)
или
две дополнительные «па­разитных»
шестерни.

    1. 14. Шиномонтажные стенды. Устройство и виды работ.

Шиномонтажные
станки (стенды) служат как для бортирования
покрышки на колесный диск, так и для
обратной операции — снятия покрышки с
колесного диска. В настоящее время с
появлением все более часто встречающихся
дисков из легкосплавных материалов и
достаточно специфических типов покрышек
(низкопрофильных и не требующих подкачки),
процесс монтажа становится достаточно
трудоемким и технологически сложным.
Шиномонтажные станки (стенды) значительно
облегчают процесс монтажа / демонтажа
и в тоже время гарантируют сохранность
дорогостоящих покрышек и колесных
дисков, которые могут прийти в негодность
в процессе этих операций.

Главные элементы
стенда

  1. Поворотный стол
    с элементами фиксации

  2. Пневматическое
    нажимное устройство, отжимающее шину
    от замочной канавки обода (состоит из
    лопатки отжимающей, цилиндра двойного
    хода)

  3. Вертикальная рука,
    регулируемая по высоте с помощью
    пневматики.

Нажимное устройство,
выполненное сбоку стенда имеет насадную
лопатку. Колесо устанавливается на
оправку с упором одной стороны в стенку
стенда и лопатка осаживает шину в выемку
обода.

Колесо устанавливается
на столе и монтажная лапка, расположенная
на руке снимает шину с диска колеса.
Стенд может
комплектоваться инфлятором

(спец. воздушный резервуар). В этом случае
зажимные лапы имеют отверстия, через
которые воздух из инфлятора вырывается
с высокой скоростью, поэтому при монтаже
отпадает необходимость в нижнем упорном
кольце, что упрощает монтаж бескамерных
шин, особенно при искажении их формы
или незначительных дефектах на окраине
диска.

Главное отличие
полностью автоматических стендов от
полуавтоматических – ручные механические
операции, в т.ч. подвод и отвод лапки
выполняются пневматикой.

После установки
новой шины производится подкачка через
вентиль, управление стендом ведется
педалями. Форма монтажной лапки
разрабатывается и потенцируется
самостоятельно каждым производителем
стендов в секрете от конкурентов.

В некоторых моделях
вся лапка изготавливается из полимеров,
в других в конструкцию лапки входит
металлич. ролик или пластиковая втулка
для уменьшения вероятности повреждения
диска.

В список опций
включено устройство взрывной накачки
и генератор азота для накачки.

Использование
азота, вместо воздуха имеет ряд
преимуществ:

Повышается
стабильность давления в шине (безопасность
на трассе)

Не возникает условий
для конденсации влаги в шине, что
предотвращает ржавление диска и удлиняет
срок службы шин.

типов шестерен | Бесплатное руководство по передаче

Что такое шестерня?

Зубчатая передача — это разновидность элемента машины, в которой зубья нарезаны на цилиндрические или конусообразные поверхности с равным интервалом. Зацепляя пару этих элементов, они используются для передачи вращений и сил от ведущего вала к ведомому валу. Шестерни можно разделить по форме на эвольвентные, циклоидальные и трохоидальные. Кроме того, они могут быть классифицированы по положению валов как шестерни с параллельными валами, шестерни с пересекающимися валами и шестерни с непараллельными и непересекающимися валами.История шестеренок давняя, и использование шестерен уже появилось в Древней Греции до нашей эры. в сочинении Архимеда.


Ящик для образцов различных типов шестерен

Типы шестерен


Различные типы шестерен

Существует много типов зубчатых колес, таких как прямозубые, косозубые, конические, червячные, зубчатые рейки и т. Д. Их можно в целом классифицировать, глядя на положения осей, таких как параллельные валы, пересекающиеся валы и непересекающиеся валы. ,

Необходимо точно понимать различия между типами шестерен, чтобы обеспечить передачу необходимой силы в механических конструкциях. Даже после выбора общего типа важно учитывать такие факторы, как: размеры (модуль, количество зубьев, угол наклона спирали, ширина торца и т. Д.), Стандарт класса точности (ISO, AGMA, DIN), необходимость шлифования зубьев. и / или термообработка, допустимый крутящий момент и эффективность и т. д.

Помимо этой страницы, мы представляем более подробную техническую информацию о редукторе в разделе «Знание передач» (отдельная страница PDF).В дополнение к приведенному ниже списку, каждый раздел, например червячная передача, реечная шестерня, коническая шестерня и т. Д., Имеет собственное дополнительное пояснение относительно соответствующего типа шестерни. Если PDF-файл просматривать сложно, обратитесь к этим разделам.

Лучше всего начать с общих знаний о типах шестерен, как показано ниже. Но помимо них есть и другие типы, такие как торцовая шестерня, шестеренчатая шестерня (двойная косозубая шестерня), коронная шестерня, гипоидная шестерня и т. Д.

  • Цилиндрическая шестерня

    Шестерни с цилиндрическими делительными поверхностями называются цилиндрическими шестернями.Цилиндрические зубчатые колеса относятся к группе зубчатых колес с параллельными валами и представляют собой цилиндрические зубчатые колеса с прямой линией зубьев, параллельной валу. Цилиндрические зубчатые колеса являются наиболее широко используемыми зубчатыми колесами, которые могут обеспечить высокую точность при относительно простых производственных процессах. Они обладают отсутствием нагрузки в осевом направлении (осевая нагрузка). Большая из пары зацеплений называется шестерней, а меньшая — шестерней.
    Щелкните здесь, чтобы выбрать цилиндрические зубчатые колеса

    Эскиз прямозубой шестерни

  • Helical Gear

    Цилиндрические шестерни используются с параллельными валами, аналогично цилиндрическим зубчатым колесам, и представляют собой цилиндрические шестерни с кривыми зубьями.У них лучшее зацепление зубьев, чем у прямозубых шестерен, они обладают превосходной бесшумностью и могут передавать более высокие нагрузки, что делает их пригодными для применения на высоких скоростях. При использовании косозубых шестерен они создают осевое усилие в осевом направлении, что требует использования упорных подшипников. Винтовые шестерни бывают с правым и левым скручиванием, требуя встречных шестерен для зацепляющейся пары.
    Нажмите здесь, чтобы выбрать косозубые шестерни

    Эскиз косозубой шестерни

  • Зубчатая рейка

    Зубья одинакового размера и формы, нарезанные на равные расстояния вдоль плоской поверхности или прямого стержня, называются зубчатой ​​рейкой.Зубчатая рейка представляет собой шестерню цилиндрической формы с бесконечным радиусом шагового цилиндра. Взаимодействуя с цилиндрической шестерней, он преобразует вращательное движение в поступательное. Зубчатые рейки можно разделить на прямые зубчатые рейки и косозубые зубчатые рейки, но обе имеют прямые линии зубьев. Обрабатывая концы зубчатых реек, можно стыковать зубчатые рейки встык.
    Нажмите здесь, чтобы выбрать зубчатую стойку

    Эскиз зубчатой ​​рейки

  • Коническая шестерня

    Коническая шестерня имеет форму конуса и используется для передачи усилия между двумя валами, которые пересекаются в одной точке (пересекающиеся валы).Коническая шестерня имеет конус в качестве передней поверхности, а ее зубья нарезаны по конусу. Типы конических зубчатых колес включают прямые конические зубчатые колеса, косозубые конические зубчатые колеса, спирально-конические зубчатые колеса, косозубые зубчатые колеса, угловые конические зубчатые колеса, коронные зубчатые колеса, конические зубчатые колесные зубчатые колеса и гипоидные зубчатые колеса.
    Нажмите здесь, чтобы выбрать конические шестерни

    Эскиз конической шестерни

  • Спирально-коническая шестерня

    Спирально-коническая шестерня — это коническая шестерня с изогнутыми линиями зубьев. Благодаря более высокому коэффициенту контакта зубьев они превосходят прямые конические шестерни по эффективности, прочности, вибрации и шуму.С другой стороны, их труднее производить. Кроме того, поскольку зубья изогнуты, они создают осевые силы в осевом направлении. В спирально-конических зубчатых колесах зубчатые колеса с нулевым углом закручивания называются коническими зубчатыми колесами с нулевым углом поворота.
    Щелкните здесь, чтобы выбрать спиральные конические шестерни

    Эскиз спирально-конической шестерни

  • Винтовая шестерня

    Винтовая шестерня — это пара одинаковых ручных косозубых шестерен с углом поворота 45 ° на непараллельных, непересекающихся валах.Поскольку контакт зубьев является точечным, их несущая способность мала, и они не подходят для передачи большой мощности. Поскольку мощность передается за счет скольжения поверхностей зубьев, при использовании винтовых передач необходимо обращать внимание на смазку. Нет никаких ограничений по сочетанию количества зубов.
    Нажмите здесь, чтобы выбрать винтовые шестерни

    Эскиз винтовой передачи

  • Mitre Gear

    Miter Gear — конические шестерни с передаточным числом 1.Они используются для изменения направления передачи мощности без изменения скорости. Есть прямые угловые и спирально-угловые передачи. При использовании спирально-угловых шестерен необходимо рассмотреть возможность использования упорных подшипников, поскольку они создают силу тяги в осевом направлении. Помимо обычных косозубых шестерен с углами вала 90 °, косозубые шестерни с любыми другими углами вала называются угловыми косозубыми шестернями.
    Нажмите здесь, чтобы выбрать Miter Gears

    Эскиз митры шестерен

  • Червячная передача

    Винт, вырезанный на валу, называется червяком, сопряженная шестерня — червячным колесом, а вместе на непересекающихся валах называется червячной передачей.Червяки и червячные колеса не ограничиваются цилиндрическими формами. Есть песочные часы, которые могут увеличить коэффициент контакта, но производство становится более сложным. Из-за скользящего контакта поверхностей шестерен необходимо уменьшить трение. По этой причине, как правило, для червяка используется твердый материал, а для червячного колеса — мягкий материал. Несмотря на низкую эффективность из-за скользящего контакта, вращение происходит плавно и тихо. Когда угол подъема червяка мал, он создает функцию самоблокировки.
    Нажмите здесь, чтобы выбрать червячные передачи

    Эскиз червячной передачи

  • Внутренняя шестерня

    Внутренняя шестерня имеет зубья, нарезанные внутри цилиндров или конусов, и соединена с внешними шестернями. В основном внутренние шестерни используются для планетарных зубчатых передач и зубчатых муфт валов. Существуют ограничения в количестве различий между зубьями между внутренними и внешними зубчатыми колесами из-за эвольвентного натяга, трохоидного натяга и проблем триммирования.Направления вращения внутреннего и внешнего зубчатых колес в зацеплении одинаковы, в то время как они противоположны, когда два внешних зубчатых колеса находятся в зацеплении.
    Нажмите здесь, чтобы выбрать внутренние шестерни

    Эскиз внутренней шестерни

overview of gears
Обзор шестерен

(Важная терминология и номенклатура передач на этом рисунке)

  • Червь
  • Червячное колесо
  • Внутренняя шестерня
  • Зубчатая муфта
  • Шестерня винтовая
  • Эвольвентные шлицевые валы и втулки
  • Угловая шестерня
  • Цилиндрическая шестерня
  • Цилиндрическая шестерня
  • Трещотка
  • Собачка
  • Стеллаж
  • Шестерня
  • Шестерня прямая коническая
  • Спирально-коническая шестерня

Есть три основных категории шестерен в соответствии с ориентацией их осей

Конфигурация:

  1. Параллельные оси / прямозубая шестерня, косозубая шестерня, зубчатая рейка, внутренняя шестерня
  2. Пересекающиеся оси / угловая шестерня, прямая коническая шестерня, спирально-коническая шестерня
  3. Непараллельные, непересекающиеся оси / винтовая передача, червячная передача, червячная передача (червячное колесо)
  4. Прочее / Эвольвентный шлицевой вал и втулка, зубчатая муфта, собачка и трещотка

Разница между шестерней и звездочкой

Проще говоря, шестерня входит в зацепление с другой шестерней, в то время как звездочка зацепляется с цепью, а не шестерней.Помимо звездочки, предмет, который чем-то похож на шестеренку, является храповым механизмом, но его движение ограничено одним направлением.

Классификация типов зубчатых колес с точки зрения позиционных соотношений присоединяемых валов

  1. Когда два вала шестерен параллельны (параллельные валы)
    Цилиндрическая шестерня, реечная, внутренняя шестерня, косозубая шестерня и т. Д.
    Как правило, они обладают высокой эффективностью передачи.
  2. Когда два вала шестерен пересекаются друг с другом (пересекающиеся валы)
    Коническая шестерня относится к этой категории.
    Обычно они обладают высокой эффективностью передачи.
  3. Когда два вала шестерен не параллельны или не пересекаются (смещенные валы)
    Червячная передача и винтовая передача относятся к этой группе.
    Из-за скользящего контакта эффективность передачи относительно низкая.

Класс точности шестерен

Когда типы шестерен группируются по точности, используется класс точности. Класс точности определяется стандартами ISO, DIN, JIS, AGMA и т. Д.Например, JIS определяет погрешность шага каждого класса точности, погрешность профиля зуба, отклонение спирали, погрешность биения и т. Д.

Наличие шлифовального круга

Наличие шлифовки зубьев сильно влияет на работоспособность шестерен. Поэтому при рассмотрении типов шестерен шлифование зубьев является важным элементом, который следует учитывать. Шлифовка поверхности зубьев делает шестерни более тихими, увеличивает передаточную способность и влияет на класс точности. С другой стороны, добавление процесса шлифования зубьев увеличивает стоимость и подходит не для всех шестерен.Чтобы добиться высокой точности, кроме шлифовки, существует процесс, называемый бритьем с использованием бритвенных ножей.

Виды формы зуба

Чтобы широко классифицировать типы зубчатых колес по форме зуба, различают эвольвентную форму зуба, форму циклоидного зуба и форму трохоидного зуба. Среди них чаще всего используется эвольвентная форма зуба. Их легко производить, и они обладают способностью правильно соединяться, даже когда расстояние между центрами немного отклоняется. Циклоидная форма зуба в основном используется в часах, а трохоидная форма зуба — в насосах.

Создание шестерен

Эта статья воспроизводится с разрешения автора.
Масао Кубота, Хагурума Нюмон, Токио: Ohmsha, Ltd., 1963.

Шестерни — это колеса с зубьями, которые иногда называют зубчатыми колесами.

Шестерни — это механические компоненты, которые передают вращение и мощность от одного вала к другому, если каждый вал имеет выступы (зубья) соответствующей формы, равномерно распределенные по его окружности, так что при вращении следующий зуб входит в пространство между зубьями другого. вал.Таким образом, это компонент машины, в котором вращательная сила передается поверхностью зуба первичного двигателя, толкающей поверхность зуба ведомого вала. В крайнем случае, когда одна сторона представляет собой линейное движение (это можно рассматривать как вращательное движение вокруг бесконечной точки), это называется стойкой.

Существует множество способов передачи вращения и мощности от одного вала к другому, например, посредством трения качения, передачи намотки и т. Д. Однако, несмотря на простую конструкцию и относительно небольшой размер, шестерни имеют много преимуществ, таких как надежность передачи, точное угловое соотношение скорости, длительный срок службы и минимальные потери мощности.

От небольших часов и прецизионных измерительных приборов (приложения для передачи движения) до больших шестерен, используемых в морских системах передачи (приложения для передачи энергии), шестерни широко используются и считаются одним из важных механических компонентов наряду с винтами и подшипниками.

Есть много типов шестерен. Однако самые простые и часто используемые шестерни — это те, которые используются для передачи определенного передаточного числа между двумя параллельными валами на определенном расстоянии.В частности, наиболее популярными являются зубчатые колеса с зубьями, параллельными валам, как показано на рис. 1.1, так называемые цилиндрические зубчатые колеса.

spur-gears
[Рисунок 1.1 Цилиндрические зубчатые колеса]

Самый простой способ передачи определенного передаточного отношения угловой скорости между двумя параллельными валами — это привод трения качения. Это достигается, как показано на Рисунке 1.2, за счет наличия двух цилиндров с диаметрами, обратными передаточному отношению, находящихся в контакте и вращающихся без проскальзывания (если два вала вращаются в противоположных направлениях, контакт находится снаружи; и если они вращаются в одном направлении направление, контакт внутри).То есть вращение достигается за счет силы трения контакта качения. Однако избежать некоторого пробуксовки невозможно и, как следствие, нельзя надеяться на надежную передачу. Для получения большей передачи мощности требуются более высокие контактные силы, что, в свою очередь, приводит к высоким нагрузкам на подшипники. По этим причинам такое устройство не подходит для передачи большого количества энергии. В результате была изобретена идея создания подходящей формы зубьев, равномерно расположенных на поверхностях качения цилиндров, таким образом, чтобы по крайней мере одна пара или более зубцов всегда находилась в контакте.Сдвигая зубья ведущего вала зубцами ведущего вала, обеспечивается надежная передача. Это называется цилиндрической шестерней, а контрольный цилиндр, на котором вырезаны зубья, — это цилиндр шага. Цилиндрические зубчатые колеса представляют собой один из видов цилиндрических зубчатых колес.

Pitch-Cylinders
[Рисунок 1.2 Шаговые цилиндры]

Когда два вала пересекаются, ориентирами для нарезания зубьев являются конусы, контактирующие с качением. Это конические шестерни, как показано на рисунке 1.3, где основной конус, на котором вырезаны зубья, называется продольным конусом. (Рисунок 1.4).

bevel-gears
[Рисунок 1.3 Конические шестерни]

pitch-cones
[Рисунок 1.4 Шаговые конусы]

Когда два вала не параллельны и не пересекаются, искривленных поверхностей, контактирующих с качением, не существует. В зависимости от типа шестерен, зубья создаются на паре опорных контактирующих вращающихся поверхностей. Во всех случаях необходимо настроить профиль зуба таким образом, чтобы относительное движение контактирующих поверхностей шага соответствовало относительному движению зацепления зубьев на контрольных криволинейных поверхностях.

Когда шестерни рассматриваются как твердые тела, для того, чтобы два тела могли поддерживать заданное передаточное отношение угловой скорости при контакте с поверхностями зубьев, не сталкиваясь друг с другом и не разделяясь, необходимо, чтобы общие нормальные компоненты скорости передачи две шестерни в точке контакта должны быть равны. Другими словами, в этот момент нет относительного движения поверхностей зубчатых колес в направлении общей нормали, а относительное движение существует только вдоль контактной поверхности в точке контакта.Это относительное движение есть не что иное, как скольжение поверхностей шестерен. Поверхности зубьев, за исключением особых точек, всегда связаны с так называемой передачей скользящего контакта.

Для того, чтобы формы зубов удовлетворяли условиям, как объяснено выше, использование огибающей поверхности может привести к желаемой форме зуба в качестве общего метода.

Теперь укажите одну сторону поверхности шестерни A как изогнутую поверхность FA и задайте обеим шестерням заданное относительное вращение.Затем в системе координат, прикрепленной к шестерне B, рисуется группа последовательных положений поверхности шестерни FA. Теперь подумайте об огибающей этой группы кривых и используйте ее как поверхность FB зубьев шестерни B. Тогда из теории огибающих поверхностей ясно, что две поверхности зубчатых колес находятся в постоянном линейном контакте, и эти две шестерни будут иметь желаемое относительное движение.

Также возможно привести к форме зубов следующим методом. Рассмотрим, помимо пары шестерен A и B с заданным относительным движением, третью воображаемую шестерню C в зацеплении, где A и B находятся в зацеплении, и придайте ей поверхность FC произвольной формы (изогнутая поверхность только без тела зуба) и соответствующее относительное движение.

Теперь, используя метод, как и раньше, из воображаемого зацепления шестерни A с воображаемой шестерней C, получите форму зуба FA как огибающую формы зуба FC. Обозначим линию соприкосновения поверхностей зубьев FA и FC как IAC. Аналогичным образом получают контактную линию IBC и поверхность FB зубьев из воображаемого зацепления шестерни B и воображаемой шестерни C. Таким образом, поверхности FA и FB зубьев получаются посредством FC. В этом случае, если линии контакта IAC и IBC совпадают, шестерни A и B находятся в прямом контакте, а если IAC и IBC пересекаются, шестерни A и B будут иметь точечный контакт на этом пересечении.

Это означает, что с помощью этого метода можно получить как формы зубьев точечного контакта, так и формы зубьев линейного контакта.

Однако существуют ограничения для геометрически полученных форм зубьев, как объяснено выше, особенно когда тела зубьев поверхностей FA и FB вторгаются друг в друга или когда эти области не могут использоваться в качестве зубных форм. Это вторжение одного тела зуба в другой называется интерференцией профилей зубов.

Как ясно из приведенного выше объяснения, теоретически существует множество способов изготовления зубных форм, которые создают заданное относительное движение.Однако в действительности учет зубчатого зацепления, прочности формы зуба и сложности нарезания зуба ограничит использование таких форм зубьев до нескольких.

Технические данные Free Gear доступны в формате PDF.

KHK предлагает бесплатно книгу «Технические данные редуктора» в формате PDF. Эта книга очень полезна для изучения шестерен и передач. В дополнение к типам зубчатых колес и терминологии зубчатых колес в книгу также включены разделы, касающиеся профиля зуба, расчетов размеров, расчетов на прочность, материалов и термической обработки, идей о смазке, шума и т. Д.Из этой книги вы можете многое узнать о редукторе.

Способы использования шестерен в ситуациях механического проектирования

Шестерни в основном используются для передачи энергии, но, согласно идеям, они могут использоваться в качестве элементов машин по-разному. Ниже представлены некоторые способы.

  1. Захватывающий механизм
    Используйте две прямозубые шестерни одного диаметра в зацеплении, чтобы при реверсировании ведущей шестерни ведомая шестерня также реверсировалась. Используя это движение, вы можете получить механизм захвата заготовки.За счет регулировки угла раскрытия захватного захвата можно разместить заготовки различных размеров, что обеспечивает универсальную конструкцию захватного механизма.
  2. Механизм прерывистого движения
    Существует Женевский механизм в качестве механизма прерывистого движения. Однако из-за необходимости в специализированных механических компонентах он стоит дорого. Используя шестерни с отсутствующими зубьями, можно получить недорогой и простой прерывистый механизм.
    Под шестерней с отсутствующими зубьями мы понимаем шестерню, у которой любое количество зубьев шестерни удалено от корней.Шестерня, которая сопряжена с шестерней с отсутствующими зубьями, будет вращаться, пока она находится в зацеплении, но остановится, как только наткнется на часть с отсутствующими зубьями ведущей шестерни. Однако его недостатком является переключение при приложении внешней силы, когда шестерни выключены. В этих случаях необходимо поддерживать его положение, например, с помощью фрикционного тормоза.
  3. Специальный механизм передачи мощности
    Установив одностороннюю муфту (механизм, который позволяет вращательное движение только в одном направлении) на одной ступени зубчатой ​​передачи редуктора скорости, вы можете создать механизм, который передает движение в одном направлении, но на холостом ходу задом наперед.
    Используя этот механизм, вы можете создать систему, которая управляет двигателем, когда электроэнергия включена, но когда мощность отключается, он перемещает выходной вал за счет силы пружины.
    За счет внутренней установки пружины (спиральной пружины кручения или спиральной пружины), которая наматывается в направлении вращения в зубчатой ​​передаче, редуктор скорости приводится в действие по мере наматывания пружины. Как только пружина полностью заведена, двигатель останавливается, и встроенный в двигатель электромагнитный тормоз удерживает это положение.
    Когда электричество отключено, тормоз отпускается, и сила пружины приводит в движение шестерню в направлении, противоположном тому, в котором работал двигатель.Этот механизм используется для закрытия клапанов при потере питания (аварийный) и называется «аварийным запорным клапаном с пружинным возвратом».

Почему сложно достать нужные шестерни?

Нет стандарта на саму шестерню

Зубчатые передачи используются во всем мире с древних времен во многих областях и являются типичными компонентами элементов машин. Однако, что касается класса точности шестерен, в различных странах существуют промышленные стандарты, такие как AGMA (США), JIS (Япония), DIN (Германия) и т. Д.С другой стороны, нет стандартов в отношении факторов, которые в конечном итоге определяют [саму зубчатую передачу], таких как ее форма, размер, диаметр отверстия, материал, твердость и т. Д. В результате нет единого подхода, но это сбор фактических спецификаций зубчатых колес, выбранных отдельными разработчиками, которые подходят для дизайна их машин или тех, которые определены отдельными производителями зубчатых колес.

Существует множество спецификаций передач

Как упоминалось выше, существует множество спецификаций передач.За исключением очень простых передач, не будет преувеличением сказать, что существует столько же видов, сколько и мест, где используются шестерни. Например, среди многих зубчатых колес, когда угол давления, шаг зуба и количество зубьев совпадают, существует много других спецификаций, которые определяют зубчатые колеса, такие как размер отверстия, ширина торца, термообработка, окончательная твердость, шероховатость поверхности после шлифования, наличие вала и т. д. Можно сказать, что вероятность того, что две шестерни будут совместимы, мала.Это одна из причин, почему (например, при поломке шестерни) трудно получить замену.

Невозможно получить желаемую передачу

Иногда случается, что вы не можете получить замену изношенной или сломанной шестерни в том месте, где используется машина. В этом случае в большинстве случаев нет проблем, если есть руководство или список деталей для станка, который содержит чертеж, необходимый для изготовления зубчатого колеса. Также нет проблем, если есть возможность связаться с производителем станка и что производитель может поставить необходимое оборудование.К сожалению, во многих случаях:
— В руководстве станка не показан чертеж шестерни как таковой.
— Невозможно получить только шестерню от производителя станка и т. Д.
По этим причинам трудно получить необходимую передача. В этих случаях возникает необходимость составить производственный чертеж сломанной шестерни. Это часто бывает сложно без специальных знаний в области техники. Ситуация часто бывает такой же сложной для производителей зубчатых колес из-за недостатка данных о них.Кроме того, для создания рисунка из сломанного механизма требуется много инженерных кадров, и это поднимает вопрос о том, кто будет нести эти затраты.

Когда требуется только одна передача, стоимость производства высока

Когда машина, использующая шестерню, производится серийно, то также и шестерня, которая изготавливается для определенного размера партии, что позволяет распределять удельную стоимость шестерни за счет экономии на масштабе. С другой стороны, пользователи, использующие машину после ее изготовления, и когда одна или две шестерни нуждаются в замене, они часто сталкиваются с высокими производственными затратами, из-за чего стоимость окончательного ремонта иногда бывает очень высокой.Короче говоря, разница в двух методах производства (массовое или мелкосерийное) сильно влияет на стоимость снаряжения. Например, покупка 300 зубчатых колес за один выстрел для проекта по производству нового оборудования (изготовление 300 зубчатых колес одной партией) по сравнению с покупкой одного запасного зубчатого колеса позже (с производственной партией в 1 штуку) имеет огромную разницу в стоимости единицы продукции. Такая же ситуация на этапе проектирования новой машины, когда для прототипа требуется одна шестерня с такой же высокой стоимостью.

Возможность использования стандартных передач

При разработке новой машины, если характеристики используемых шестерен могут быть согласованы со спецификациями стандартных шестерен изготовителя шестерен, упомянутые выше проблемы могут быть решены. Таким способом:

  • Вы можете избежать этапа конструирования новых шестерен при конструировании станка
  • Вы можете использовать 2D / 3D модели САПР, чертежи деталей для печати, расчеты прочности и т. Д., Предоставленные производителем шестерен.
  • Даже если вам нужна только одна шестерня в качестве пробной, стандартные шестерни обычно производятся серийно производителем шестерен по разумной цене.

Вот некоторые из удобств, которыми вы можете воспользоваться.

Кроме того, когда шестерня в используемом механизме нуждается в замене, если ее технические характеристики аналогичны характеристикам зубчатого колеса, ее можно заменить на стандартную шестерню отдельно или на стандартную шестерню с дополнительной работой. В этой ситуации также можно избежать неудобств, связанных с выполнением следующих задач:

  • Посмотреть чертежи
  • Создание новых чертежей
  • Ищите подрядчика для изготовления шестерни
  • Примите высокую стоимость штучного производства

Ссылки по теме:
Знать о типах зубчатых колес и соотношениях между двумя валами
Номенклатура зубчатых колес
Калькулятор зубчатых передач
Типы и характеристики зубчатых колес
Типы зубчатых колес и терминология
Зубчатая рейка и шестерня

,

Типы передач и терминология | KHK Gears

Ссылки по теме: 齿轮 的 种类 及 术语 — 中文 中

Шестерни различаются по разным типам, и есть много специальных технических слов для их определения. В этом разделе представлены эти технические слова, а также часто используемые шестерни и их особенности.

1.1 Типы шестерен

Наиболее распространенный способ классификации шестерен — по типу категории и ориентации осей.
Шестерни подразделяются на 3 категории; шестерни с параллельными осями, шестерни с пересекающимися осями и шестерни с непараллельными и непересекающимися осями.

Прямозубые шестерни
и

косозубые шестерни
— шестерни с параллельными осями.

Конические шестерни
пересекающиеся оси шестерен. Винтовой или перекрестно-винтовой,

червячный редуктор
а гипоидные передачи относятся к третьей категории. В таблице 1.1 перечислены типы шестерен по ориентации осей.

Таблица 1.1 Типы шестерен и их категории

  • Категории шестерен

    Параллельные оси
  • Типы шестерен

    прямозубая шестерня

    Стойка шпора

    Внутренняя шестерня

    Цилиндрическая шестерня

    Винтовая стойка

    Двойная косозубая шестерня
  • КПД (%)

    98.0–99,5
  • Категории шестерен

    Пересекающиеся оси Шестерни
  • Типы шестерен

    Шестерня прямая коническая

    Спирально-коническая шестерня

    Коническая шестерня Zerol
  • КПД (%)

    98,0 — 99,0
  • Категории шестерен

    Непараллельные и непересекающиеся
  • Типы шестерен

    Винтовая передача (КПД 70.0 — 95,0%)

    Червячная передача (КПД 30,0 — 90,0%)

Кроме того, в таблице 1.1 приведен теоретический диапазон КПД различных типов шестерен. Эти цифры не включают потери подшипников и смазочного материала.

Поскольку зацепление парных шестерен с параллельными осями или шестерен с пересекающимися осями связано с простыми движениями качения, они производят относительно минимальное проскальзывание и их эффективность высока.

Непараллельные и непересекающиеся шестерни, такие как винтовые шестерни или червячные шестерни, вращаются с относительным проскальзыванием и за счет передачи мощности, что приводит к трению и снижает эффективность по сравнению с другими типами шестерен.
КПД шестерен — это величина, полученная при точной установке и работе шестерен. В частности, для конических зубчатых колес предполагается, что эффективность будет снижаться при неправильной установке в нерабочем положении на вершине конуса.

(1) Шестерни с параллельными осями

1 прямозубая шестерня

Рис. 1.1 Цилиндрическая зубчатая передача

Это шестерня цилиндрической формы, у которой зубья параллельны оси. Это наиболее часто используемая передача с широким спектром применения и самая простая в изготовлении.

2 зубчатая рейка

Рис. 1.2 Зубчатая рейка

Это шестерня линейной формы, которая может зацепляться с цилиндрической шестерней с любым количеством зубьев.

зубчатая рейка
представляет собой часть прямозубой шестерни с бесконечным радиусом.

3 Внутренняя шестерня

Рис. 1.3 Внутренняя шестерня и прямозубая шестерня

Это шестерня цилиндрической формы, но с зубьями внутри круглого кольца. Он может сцепляться с цилиндрической зубчатой ​​передачей.Внутренние шестерни часто используются в планетарных редукторах.

4 цилиндрическая шестерня

Рис. 1.4 Винтовая шестерня

Это шестерня цилиндрической формы с геликоидальными зубьями. Цилиндрические шестерни могут выдерживать большую нагрузку, чем прямозубые, и работают более тихо. Они широко используются в промышленности. Недостаток — осевой

осевая нагрузка
сила, вызванная формой спирали.

5 Винтовая стойка

Фиг.1.5 Винтовая стойка

Это шестерня линейной формы, которая входит в зацепление с косозубой шестерней. Винтовая стойка может рассматриваться как часть косозубой шестерни с бесконечным радиусом.

6 Двойная косозубая шестерня

Рис1.6 Двойная косозубая шестерня

Шестерня с левым и правым косозубыми зубьями. Двойная спиральная форма уравновешивает присущие осевые силы.

(2) Пересекающиеся оси

1 прямая коническая шестерня

Фиг.1.7 Прямая коническая шестерня

Это шестерня, в которой зубья имеют конические конические элементы, которые имеют то же направление, что и базовая линия делительного конуса (образующая). Прямая коническая шестерня является самой простой в производстве и наиболее широко применяемой в семействе конических зубчатых колес.

Коническая шестерня с двумя спиральными зубьями

Рис.1.8 Спирально-коническая шестерня

Это коническая шестерня с косым углом спиральных зубьев. Его гораздо сложнее изготовить, но он отличается большей прочностью и меньшим уровнем шума.

3 Zerol коническая шестерня

Рис.1.9 Коническая шестерня Zerol

Это особый тип спирально-конической передачи, у которой угол спирали равен нулю. Он имеет характеристики как прямых, так и спирально-конических зубчатых колес. Силы, действующие на зуб, такие же, как у прямолинейной конической шестерни.

(3) Зубчатые передачи непараллельных и непересекающихся осей

1 пара червячной передачи

Рис. 1.10 Пара червячной передачи

Червячная пара — это название червячного и червячного колеса с зацеплением.Отличительной особенностью является то, что он предлагает очень большое передаточное число в одном зацеплении. Он также обеспечивает тихую и плавную работу. Однако эффективность передачи оставляет желать лучшего.

2-винтовая шестерня (косозубая шестерня)

Рис.1.11 Винтовая шестерня

Пара цилиндрических зубчатых колес, используемая для привода непараллельных и непересекающихся валов, у которых зубья одного или обоих элементов пары имеют форму винта. Винтовые передачи используются в комбинации винтовая передача / винтовая передача или винтовая передача / прямозубая шестерня.Винтовые шестерни обеспечивают плавную и бесшумную работу. Однако они не подходят для передачи большой мощности.

(4) Прочие специальные передачи

1 Face Gear

Рис.1.12 Торцевая шестерня

Псевдоконическая шестерня с ограничением по осям пересечения 90 °. Торцевая шестерня представляет собой круглый диск с зубчатым венцом на боковой поверхности; отсюда и название Face Gear.

Пара огибающих шестерен

Фиг.1.13 Огибающая зубчатая пара

В этом червячном наборе используется особая форма червяка, которая частично охватывает червячную передачу, если смотреть в направлении оси червячной передачи. Его большим преимуществом перед стандартным червяком является более высокая грузоподъемность. Однако червячная передача очень сложна в проектировании и производстве.

3 Гипоидная передача

Рис. 1.14 Гипоидная передача

Эта шестерня представляет собой небольшое отклонение от конической шестерни, которая возникла как специальная разработка для автомобильной промышленности.Это позволило приводу к задней оси быть непересекающимся и, таким образом, позволило опустить кузов автомобиля. Он очень похож на спирально-коническую шестерню. Однако его сложно спроектировать и сложнее всего изготовить на генераторе с конической зубчатой ​​передачей.

1.2 Символы и терминология

Символы и технические слова, используемые в этом каталоге, перечислены в таблицах 1.2–1.4. Ранее использовавшиеся стандарты JIS B 0121 и JIS B 0102 были пересмотрены на JIS B 0121: 1999 и JIS B 0102: 1999 в соответствии со стандартом Международной организации по стандартизации (ISO).В соответствии с редакцией мы унифицировали использование слов и символов, соответствующих стандарту ISO.

Таблица 1.2 Линейные и круглые размеры

Термины и символы

* ПРИМЕЧАНИЕ 1.

«Осевой люфт» не является термином, определенным JIS.

Таблица 1.3 Угловые размеры

Термины и символы

ПРИМЕЧАНИЕ 2. Угол наклона спиральной конической шестерни был определен как угол наклона спирали согласно JIS B 0102.

ПРИМЕЧАНИЕ 3.Это должен быть угол тангажа согласно JIS B 0102.

ПРИМЕЧАНИЕ 4. Это должен быть угол наконечника в соответствии с JIS B 0102.

ПРИМЕЧАНИЕ 5. Это должен быть угол корня согласно JIS B 0102.

Таблица 1.4 Прочее

Термины и символы

Цифровой индекс используется для различения «шестерни» от «шестерни» (примеры z1 и z2), «червяка» от «червячного колеса», «ведущей шестерни» от «ведомой шестерни» и т. Д. (Чтобы найти пример, см. Следующую страницу Рис.2,1).

В таблице 1.5 указан греческий алфавит, международный фонетический алфавит.

Таблица 1.5 Греческий алфавит

Ссылки по теме:

Знать направления вращения и числа оборотов шестерен
Типы и характеристики передач
— Страница «Азбуки шестеренок» — B

Базовая терминология и расчет редукторов
— Страница «Азбуки шестеренок» — B

Типы передач
— Страница «Введение в Gears»

Характеристики шестерен
— Страница «Введение в Gears»

Терминология Gear
— Страница «Введение в Gears»

Номенклатура передач

,

КЛАССИФИКАЦИЯ НЕИСПРАВНОСТЕЙ ДИФФЕРЕНЦИАЛЬНОЙ КОРОБКИ ПЕРЕДАЧ КЛАССИФИКАЦИЯ ОСНОВАНИЯ ДИФФЕРЕНЦИАЛЬНОЙ КОРОБКИ ПЕРЕДАЧ НА МНОГОКЛАССНЫХ … редукторах, которые предлагаются в … Точность классификации SVM с радиальным основанием С ВРЕМЕНИ

ДАННЫЕ ЧАСТОТНОЙ ВИБРАЦИИ Ebrahim Ebrahimi

Кафедра машиностроения, отделение Керманшаха, Исламский университет Азад,

Керманшах, Иран

электронная почта: [email protected], [email protected]

Применение новых методов технического обслуживания, таких как мониторинг состояния с помощью вибрации

Анализ

предоставляет инженерам полезную информацию о производительности машины

помогает им поддерживать, контролировать и оптимизировать Производство. В этом исследовании был представлен эффективный и надежный метод

, основанный на анализе вибрации, для диагностики неисправностей в дифференциале

. Изучали влияние состояния исправных и неисправных шестерен при вибросигналах

от дифференциала.В качестве дифференциальных условий принимались нормальный дифференциал

, сломанная и изношенная коронная шестерня, сломанная и изношенная шестерня. Спектры вибрации с использованием статистических параметров в различных условиях были получены для дифференциала

. При диагностике неисправностей использовался машинный классификатор опорных векторов. Получена наивысшая точность

, что составляет 97,33%.

Ключевые слова: коронное колесо, шестерня, вибрация, вейвлет-преобразование, SVM

1.Введение

Шестерни являются частью машин или трансмиссий, которые используются для перемещения и приводятся в действие зубцами передачи на другую передачу

. Спирально-конические шестерни являются одной из основных и важных частей трансмиссии

, коробки передач и дифференциала или инженерного оборудования, такого как самолеты, корабли

, автомобили и т. Д. Системы (Bibo et al., 2011). С другой стороны, из-за роли конических зубчатых колес

в работе многих систем, на заводах может быть нанесен большой ущерб из-за конков

.Обнаружение неисправностей имеет очень важный метод (Фарохзад и др., 2013). Lu & Wei

(2013) Новый метод извлечения и классификации признаков адаптивного подхода поддерживает векторную машину

для мониторинга, мониторинга состояния и устранения неисправностей редукторов

, которые предлагаются в различных вариантах для быстрой работы. Chen et al. (2015) с помощью свертки нейронных сетей

для анализа вибрации и умно классифицировали дефекты коробки передач. они

в них изучают статистические характеристики, стандартное отклонение, асимметрию и

Kvrtvsys сигнала во временной области и сигнала частотной области и используются в качестве входных данных для нейронной сети

.результаты 12 различных классов классификации показали, что наивысшая точность классификации

свертки нейронной сети составила 80/98%. С помощью нейронных сетей

был проведен анализ свертки и вибрации

для интеллектуальных дефектов коробки передач. В этом исследовании

статистические характеристики стандартного отклонения, асимметрии, Kvrtvsys и RMS временного диапазона

и сигналов частотной области извлекаются и рассматриваются как входные данные для нейронной сети

.Результаты 12 различных классов классификации показали, что наивысшая точность свертки нейронной сети по классификации

составила 80/98% (Ziani et al., 2011). В исследовании с использованием

методов анализа вибрации и генетического алгоритма и SVM, для классификации и

mailto: [email protected]: [email protected]

  • 2

    интеллектуального обнаружения неисправностей коробки передач модели вертолета ВВС CH_46 в Соединенных Штатах Америки

    Америки (Hizarci et al., 2016). Для выявления неисправности коробки передач по спектру вибрации

    Анализ

    проверил неисправность коробки передач в колесной паре и редукторе улитки. (Вакар и

    Деметгул, 2016). Диагностика неисправностей косозубой коробки передач методом компиляции

    термографических и вибрационных сигналов (Yaguo et al, 2009).

    Обеспечивается комбинация многомерного подхода к интеллектуальному устройству обнаружения неисправностей.

    Комбинация многомерных методов включает: метод преобразования Гильберта, анализ вейвлетов

    и экспериментальные модели.Bangalore (2015), предложив метод, основанный на сигналах вибрации

    и искусственных нейронных сетях, используемый в качестве онлайн-метода для обнаружения неисправностей редуктора ветряной турбины

    . Каждое из вышеперечисленных исследований было сосредоточено на части выявления неисправностей

    шестерен. В этом исследовании мы хотим диагностировать дефекты в дифференциале

    автомобиля с помощью классификатора машины опорных векторов.

    2. Материал и методы 2.1. Испытательный стенд и сбор данных Для сбора данных о вибрации от дифференциала в исправном и неисправном состоянии в конической шестерне

    на фиг.1 была подготовлена ​​подложка 1, в которой оригинальные компоненты

    , включая электродвигатели, муфту, дифференциал и кадры.

    Рисунок 1. Стендовые испытания

    В этом исследовании данные о вибрации были измерены автономным методом. Для этого использовалась система сбора данных

    от системы Easy-Viber VMI с пьезоэлектрическим акселерометром

    и тахометром для измерения скорости и ее регистрации производства Швейцарии. Вибрационные сигналы

    в программе SpectraPro4 передаются в компьютер и с использованием программы Excel и

    загружаются в программу MATLAB.

    2.2. Обзор дефектов и дефектов. В этом исследовании дефекты были проверены с помощью исследований и статей. Предыдущие исследования зубчатых колес были выбраны

    , и, насколько это возможно, мы попытались проверить, что выбраны важные и распространенные неисправности

    в конических зубчатых передачах, и применить основные компоненты. дифференциала. Дефекты, которые были изучены в коллекции

    , включают поломку и истирание конического зубчатого колеса, а также поломку и истирание конической шестерни

    .

  • 3

    Рисунок 2. Состояние дефектов

    2.3. Обработка сигналов и выделение признаков. Перед обработкой сигналов для лучшего выделения признаков использовалась предварительная обработка признаков

    на сигналы, применяется вейвлет-преобразование. Во всех режимах, состоящих из исправного и сбоя, применялся вейвлет-анализ

    . Вейвлет-подход выбран после обзора предыдущих исследований

    . Мы используем вейвлет типа db4 с тремя уровнями, которые были протестированы на всех вариантах лечения

    (Bagheriet al., 2011; Фарохзад, 2013). После применения вейвлет-коэффициентов к

    сигналам вибрации, из компонентов и приблизительно десять важных характеристик для анализа данных были извлечены

    , чтобы различать и разделять поведение каждого сигнала. Эти особенности были представлены в исследовании

    Фарохзада и др., 2012 г.

    2.4. Моделирование с помощью SVM Производительность машины опорных векторов зависела от многих факторов, таких как мульти-класс, параметр типа ядра

    , вспомогательные переменные и выбор параметра ядра.Для решения SVM

    и поиска лучшей модели были выбраны следующие факторы, влияющие на эту производительность, и степень диагностической точности была рассчитана для каждой модели как точная и полная.

    Для создания сети мультиклассов один против одного и один против всех использовался метод с

    Гауссово радиальное базисное ядро ​​с шириной от 0,1 до 1. Результаты этого исследования

    оцениваются по параметрам степени соответствия, то есть количеству правильных решений, деленному на

    общего количества возможных решений.

    3. Результаты и обсуждение На рисунке 3 показаны быстрые сигналы во временной области в различных условиях дифференциала при скорости 1500 об / мин

    . Амплитуда суммарного сигнала при изломе зуба корончатого колеса имеет наибольшую величину. Мы

    видим, что из-за большого диапазона дифференциал находится в опасных ситуациях.

  • 4

    Рисунок 3. Сигналы вибрации в различных условиях перепада.

    Как указано, каждое из состояний дифференциала, используемое методом вейвлет-разложения, на трех уровнях

    .Всего было извлечено 200 функций для разных состояний, что все эти функции

    информативны и эффективны. С другой стороны, увеличение количества полезных функций

    привело к увеличению времени обработки сигнала. Соответственно, с помощью программного обеспечения Weka и подхода CFS

    были извлечены лучшие статистические характеристики, которые содержат наибольшее количество информации в различных состояниях отказа

    . Выходное программное обеспечение Weka и улучшенные функции показаны на рисунке 4.

    Рисунок 4. Улучшенные функции

    3.1. Результаты классификации по опорным векторам

    В таблице 1, точность опорных векторов с использованием множественного класса являются шоу для

    методы буксировки один против одного и один против всех метода с O.1 до 1 радиальных базисной ядро

    размер.

    В целом, точность опорных векторов с использованием многостраничным классом один против всех

    метода была лучше, чем один против одного.Как мы видим, с увеличением размера ядра

    () точность в обоих методах и один против одного и один против всех в большинстве случаев снижается. Точность классификации SVM с ядром радиального базиса с размером ядра 0.1 и

    была один против всех методов. Матрица неточностей для наилучшей производительности показана в таблице 2.

  • 5

    Таблица1. Точность машины опорных векторов с радиальным базисным ядром

    Точность классификации Классификация

    метод с SVM

    один против

    один

    один против

    все

    0.1

    92 97,33 0,2

    92 93,33 0,3

    89,33 92 0,4

    90,67 86,67 0,5

    86,67 81,22 0,5

    85,33 76 0,6

    80 72 0,7

    68 70,67 0,8 66

    0,

    1

    Таблица 2. Матрица неточностей для тестов данных

    Реальный класс

    состояние

    H BC WC BP WP

    75 0 0 0 0 Исправен = H

    0 75 0 0 0 Разрыв зуба коронного колеса = BC

    0 0 75 0 0 Износ абразивная коронная шестерня = WC

    0 0 0 73 2 Сломанный зуб шестерни = BP

    0 00 0 0 75 Изношенная абразивная шестерня = WP

    В таблице 2 показано, что классификатор SVM из всех условий только в одном случае поломки шестерни

    зуб распознан истирание pi

  • ,

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *