Крыльчатка турбины своими руками: Ремонт турбокомпрессора или турбины своими руками, принцип работы, причины неисправностей и малоизвестные нюансы

Содержание

Как сделать реально работающий газотурбинный двигатель в домашних условиях


Самое сложное в изготовлении и самое важное для работы турбины — это ступень компрессора. Обычно для его сборки требуется точный обрабатывающий инструмент с ЧПУ или ручным приводом. К счастью, компрессор работает при низкой температуре и может быть напечатан на 3D-принтере.

Еще одна вещь, которую обычно очень трудно воспроизвести в домашних условиях, это так называемая «сопловая лопатка» или просто NGV. Путем проб и ошибок автор нашел способ, как сделать это, не используя сварочный аппарат или другие экзотические инструменты.

Что понадобится:
1) 3D-принтер, способный работать с нитью PLA. Если у вас есть дорогой, такой как Ultimaker – это замечательно, но более дешевый, такой как Prusa Anet, тоже подойдет;
2) У вас должно быть достаточное количество PLA, чтобы напечатать все части. ABS не подойдет для этого проекта, так как он слишком мягкий. Вероятно, можете использовать PETG, но это не проверялось , так что делайте это на свой страх и риск;
3) Жестяная банка соответствующего размера (диаметр 100 мм, длина 145 мм). Предпочтительно банка должна иметь съемную крышку. Вы можете взять обычную банку (скажем, от кусочков ананаса), но тогда вам нужно будет сделать для нее металлическую крышку;
4) Лист из оцинкованного железа. Толщина 0,5 мм является оптимальной. Вы можете выбрать другую толщину, но у вас могут возникнуть трудности с изгибом или шлифовкой, поэтому будьте готовы. В любом случае Вам понадобится как минимум короткая лента из оцинкованного железа толщиной 0,5 мм, чтобы сделать проставку кожуха турбины. Подойдет 2 шт. Размером 200 х 30 мм;
5) Лист нержавеющей стали для изготовления колеса турбины, колеса NGV и кожуха турбины. Опять толщина 0,5 мм является оптимальной.
6) Твердый стальной стержень для изготовления вала турбины. Осторожно: мягкая сталь здесь просто не работает. Вам понадобится хотя бы немного углеродистой стали. Твердые сплавы будут еще лучше. Диаметр вала составляет 6 мм. Вы можете выбрать другой диаметр, но затем вам нужно будет найти подходящие материалы для изготовления ступицы;
7) 2 шт. 6х22 подшипники 626zz;
8) патрубки 1/2″ длиной 150 мм и два концевых фитинга;
9) сверлильный станок;
10) Точило
11) дремель (или что-то похожее)
12) Ножовка по металу, плоскогубцы, отвертку, плашку М6, ножницы, тиски и т. д .;
13) кусок трубы из меди или нержавеющей стали для распыления топлива;
14) Набор болтов, гаек, хомутов, виниловых трубок и прочего;
15) пропан или бутановая горелка

Если вы хотите запустить двигатель, вам также понадобятся:

16) Баллон с пропаном. Существуют бензиновые или керосиновые двигатели, но заставить их работать на этих видах топлива немного сложно. Лучше начать с пропана, а потом решить, хотите ли вы перейти на жидкое топливо или вы уже довольны газовым топливом;
17) Манометр, способный измерять давление в несколько мм водяного столба.
18) Цифровой тахометр для измерения оборотов турбины
19) Стартер. Для запуска реактивного двигателя можно использовать:
Вентилятор (100 Вт или более). Лучше центробежный)
электродвигатель (мощностью 100 Вт или более, 15000 об / мин; Вы можете использовать свой дремель здесь).

Ступица будет сделана из:
1/2 » патрубок длиной 150 мм;
два 1/2 «штуцера для шлангов;
и два подшипника 626zz;
Ножовкой, отрежьте «елочки» от штуцеров, и используйте сверло, чтобы увеличить оставшиеся отверстия. Вставьте подшипники в гайки и навинтите гайки на патрубок. Ступица готова.

Теория (и опыт в некоторой степени) говорит, что нет никакой разницы, делаете ли Вы вал из мягкой стали, твердой стали или нержавеющей стали. Так что выбирайте тот, который более доступен для Вас.

Если вы ожидаете получить приличную тягу от турбины, лучше использовать стальной стержень диаметром 10 мм (или больше). Однако на момент написания статьи был вал всего 6 мм.

Нарежьте резьбу M6, с одной стороны, длиною 35 мм. Далее надо нарезать резьбу с другого конца стержня таким образом, чтобы, когда стержень вставлялся в ступицу ( подшипники упираются в конец патрубка затягиваются с помощью гаек, которые вы сделали из штутцеров для шланга) и когда стопорные гайки завинчиваются до конца резьбы на обеих сторонах, между гайками и подшипниками остается небольшой зазор. Это очень сложная процедура. Если резьба слишком короткая, а продольный люфт слишком велик, можно нарезать резьбу чуть больше дальше. Но если резьба кажется слишком длинной (а продольного зазора вообще нет), исправить это будет невозможно.

Как вариант- валы от лазерного принтера, они точно 6 мм в диаметре. Их недостаток в том, что их предел составляет 20-25000 об / мин. Если вы хотите более высокие обороты — используйте более толстые стержни.

Для изготовления колеса турбины, а точнее его лопастей используются пресс-матрицы.
Форма лезвия становится более гладкой, если прижимать лопасть не к окончательной форме за один шаг (проход), а к некоторой промежуточной форме (1-й проход) и только затем — к окончательной форме (2-й проход). Поэтому есть STL для обоих типов пресс-матриц. Для 1-го прохода и для второго.

Вот файлы STL матриц для колеса NGV и файлы STL для матриц колеса турбины:

В этой конструкции используются 2 вида стальных колес. А именно: турбинное колесо и колесо NGV. Для их изготовления используют нержавеющую сталь. Если бы они были изготовлены из легкого или оцинкованного материала, их едва хватило бы, чтобы показать, как работает двигатель.

Вы можете вырезать диски из металлического листа, а затем просверлить отверстие в центре, но, скорее всего, вы не попадете в центр. Поэтом просверлите отверстие в листе металла, а затем приклеить бумажный шаблон, чтобы отверстие в металле и место для отверстия в бумажном шаблоне совпали. Вырежьте металл по шаблону.

Вы можете найти и скачать шаблоны ниже:
шаблон колеса турбины

turbine_wheel_template.pdf

[65.81 Kb] (скачиваний: 193)

Посмотреть онлайн файл: turbine_wheel_template.pdf
шаблон лопаток турбины

ngv_wheel_template.pdf

[73.09 Kb] (скачиваний: 151)

Посмотреть онлайн файл: ngv_wheel_template.pdf

Просверлите вспомогательные отверстия. (Обратите внимание, что центральные отверстия уже должны быть просверлены. Также обратите внимание, что колесо турбины имеет только центральное отверстие.)

Также неплохо бы оставить немного припуска при резке металла, а затем обточить кромку дисков, используя сверлильный станок и точило.
На этом этапе может быть лучше сделать несколько резервных дисков. Далее будет понятно почему.

Нарезанные диски трудно поместить в матрицу для формовки. Используйте плоскогубцы, чтобы немного повернуть лопасти. Диски с предварительно закрученными лопатками намного легче формуются матрицами. Зажмите диск между половинами пресса и сожмите в тиски. Если матрицы были предварительно смазаны машинным маслом- все пройдет гораздо легче.

Тиски — довольно слабый пресс, так что, скорее всего, вам нужно будет ударить узел молотком, чтобы сжать его дальше. Используйте несколько деревянных подушек, чтобы не сломать пластиковые матрицы.

Двух этапное формирование (использование матриц 1-го прохода и матриц 2-го прохода для финализации формы) дает определенно лучшие результаты.

Файл документа с шаблоном для опоры находится здесь:

Вырежьте деталь из листа нержавеющей стали, просверлите необходимые отверстия и согните деталь, как показано на фотографиях.

Если бы у вас есть токарный станок, вы можете сделать все проставки на нем. Другой способ сделать это — вырезать несколько плоских дисков из листа металла, положить их один на другой и плотно закрепить их болтами, чтобы получить объемную деталь.

Используйте здесь лист из мягкой (или оцинкованной) стали толщиной 1 мм.

Документы с шаблонами для проставок находятся здесь:

Вам понадобятся 2 маленьких диска и 12 больших. Количество приведено для листа металла толщиной 1 мм. Если вы используете более тонкий или более толстый, вам нужно будет отрегулировать количество дисков, чтобы получить правильную общую толщину.
Отрежьте диски и просверлите отверстия. Обточите диски одинакового диаметра, как описано выше.

Поскольку опорная шайба удерживает всю сборку NGV, Вы должны использовать здесь более толстый материал. Вы можете использовать подходящую стальную шайбу или лист (черный) толщиной не менее 2 мм.

Шаблон для опорной шайбы:

Теперь у вас есть все детали для сборки NGV. Установите их на ступицу, как показано на фотографиях.

Турбина нуждается в некотором давлении для нормальной работы. А чтобы не допустить свободного распространения горячих газов, нам нужен так называемый «турбинный кожух». В противном случае газы будут терять давление сразу после прохождения через NGV. Для правильного функционирования кожух должен соответствовать турбине + небольшой зазор. Поскольку у нас турбинное колесо и колесо NGV имеют одинаковый диаметр, нам нужно что-то, чтобы обеспечить необходимый зазор. Это что-то — проставка кожуха турбины. Это просто полоса металла, которая обернута вокруг колеса NGV. Толщина этого листа определяет величину зазора. Используйте 0,5 мм здесь.

Просто нарежьте полосу шириной 10 мм и длиной 214 мм из листа любой стали толщиной 0,5 мм.

Сам турбинный кожух будет куском металла, по диаметру колеса NGV. Или лучше пара штук. Здесь у вас больше свободы выбора толщины. Кожух — это не просто полоса, поскольку у нее есть ушки прикрепления.

Файл документации с шаблоном для кожуха турбины находится здесь:

Наденьте проставку кожуха на лопасти NGV. Закрепите с помощью стальной проволоки. Найдите способ зафиксировать проставку, чтобы она не двигалась при удалении провода. Вы можете использовать пайку.

Затем удалите проволоку, и накрутите кожух турбины на проставку. Снова используйте проволоку, чтобы плотно обернуть.

Делайте, как показано на фотографиях. Единственным соединением между NGV и ступицей являются три винта M3. Это ограничивает тепловой поток от горячего NGV к холодной ступице и не дает перегреваться подшипникам.

Проверьте может ли турбина вращаться свободно. Если нет — произведите выравнивание кожуха NGV, изменив положение регулировочных гаек на трех винтах M3. Изменяйте наклон NGV, пока турбина не сможет свободно вращаться.

Наклейте этот шаблон поверх металлического листа. Просверлите отверстия и обрежьте форму. Здесь нет необходимости использовать нержавеющую сталь. Сверните конус. Для для того, чтобы он не разворачивался, загните его.
Передняя часть камеры находится здесь:

Снова используйте этот шаблон, чтобы сделать конус. Используйте долото, чтобы сделать клиновые прорези, и затем сверните в конус. Закрепите конус с помощью загиба. Обе части удерживаются вместе только трением двигателе. Поэтому не нужно думать, как их закрепить на этом этапе.

Рабочее колесо состоит из двух частей:
диск с лопастями и кожух

Это крыльчатка Курта Шреклинга, которая была сильно изменена мной, чтобы быть более терпимой к продольным смещениям. Обратите внимание на лабирит, предотвращающий возврат воздуха из-за противодавления. Распечатайте обе части и приклейте покрытие на диск с лопастями . Неплохие результаты можно получить, используя акриловую эпоксидную смолу .



Эта деталь очень сложной формы. И когда другие детали могут быть (по крайней мере, теоретически) сделаны без использования точного оборудования, это невозможно. Что еще хуже, эта часть в наибольшей степени влияет на эффективность компрессора. Это означает, что тот факт, будет ли весь двигатель работать или нет, сильно зависит от качества и точности диффузора. Вот почему даже не пытайтесь сделать это вручную. Сделайте это на принтере.

Для удобства 3D-печати статор компрессора разделен на несколько частей. Вот файлы STL:

3D распечатать и собрать, как показано на фотографиях. Обратите внимание, что гайка с трубной резьбой 1/2″ должна быть прикреплена к центральному корпусу статора компрессора. Она используется для удержания втулки на месте. Гайка крепится с помощью 3х винтов М3.
Шаблон, где просверлить отверстия в гайке:

Также обратите внимание на теплозащитный конус из алюминиевой фольги . Он используется для предотвращения размягчения частей PLA из-за теплового излучения от вкладыша сгорания. В качестве источника алюминиевой фольги здесь можно использовать любую банку из под пива.

Вам понадобится консервная банка длиной 145 мм и диаметром 100 мм. Лучше, если вы можете использовать банку с крышкой. В противном случае вам нужно будет установить NGV со ступицей на дно консервной банки, и у вас возникнут дополнительные проблемы со сборкой двигателя для обслуживанием.

Отрежьте одно дно консервной банки. В другом дне (или лучше в крышке) вырежьте круглое отверстие 52 мм. Затем нарежьте его кромку на сектора, как показано на фотографиях.

Вставьте сборку NGV в отверстие . Оберните сектора стальной проволокой плотно.

Сделайте кольцо из медной трубки (наружный диаметр 6 мм, внутренний диаметр 3,7 мм). Или лучше Вы можете использовать трубки из нержавеющей стали. Топливное кольцо должно плотно прилегать к внутренним компонентам вашей консервной банки. Припаяйте его.
Просверлите топливные форсунки. Это всего лишь 16 штук отверстий по 0,5 мм, равномерно распределенных по кольцу. Направление отверстий должно быть перпендикулярно потоку воздуха. Т.е. нужно просверлить отверстия на внутренней стороне кольца.

Обратите внимание, что наличие так называемых «горячих точек» в выхлопе двигателя зависит практически исключительно от качества топливного кольца. Грязные или неровные отверстия, и в итоге вы получите двигатель, который просто разрушит себя при попытке запустить его. Наличие горячих точек зависит гораздо меньше от качества вкладыша, чем пытаются сказать другие. Но топливное кольцо очень важно.

Проверьте качество разбрызгивания топлива, поджигая его. Языки пламени должны быть равны друг другу.

После завершения установите топливную форсунку в корпус консервной банки.

Все, что вам нужно сделать на этом этапе, это собрать все части вместе. Если дела пойдут хорошо, проблем с этим не возникнет.

Замажьте крышку консервной банки термостойким герметиком, вы можете использовать силикатный клей с жаростойким наполнителем. Можно использовать графитовую пыль, стальной порошок и так далее.

После того, как двигатель собран, проверьте, свободно ли вращается его ротор. Если это так, сделайте предварительное испытание на огнестойкость. Используйте какой-нибудь достаточно мощный вентилятор, чтобы продуть воздухозаборник или просто вращайте вал с помощью dremel. Слегка включите топливо и зажгите поток в задней части двигателя. Отрегулируйте вращение, чтобы пропустить пламя в камеру сгорания.

ОБРАТИТЕ ВНИМАНИЕ: на этом этапе вы не пытаетесь запустить двигатель! Единственная цель испытания на огнестойкость состоит в том, чтобы нагреть его и посмотреть, хорошо ли он ведет себя или нет. На этом этапе вы можете использовать баллон из бутана, который обычно используется для ручных горелок. Если все нормально вы можете перейти к следующему шагу. Однако лучше герметизировать двигатель с помощью герметика для печи (или силикатного клея, наполненного небольшим количеством термостойкого порошка).

Вы можете запустить двигатель, либо вдувая воздух в него, либо вращая его вал каким-либо стартером.
Будьте готовы сжечь несколько дисков NGV (и, возможно, турбины) при попытке запуска. (Вот почему на шаге 4 было рекомендовано сделать несколько резервных.) Как только вы освоитесь с двигателем, вы сможете без проблем запустить его в любое время.

Обратите внимание, что в настоящее время двигатель может служить в основном в образовательных и развлекательных целях. Но это полностью функциональный турбореактивный двигатель, способный вращаться до любых желаемых оборотов (в том числе и до само разрушающихся). Не стесняйтесь улучшать и модифицировать дизайн для выполнения ваших целей. Прежде всего, вам понадобится более толстый вал, чтобы достичь более высоких оборотов и, следовательно, тяги. Второе, что нужно попробовать — это обернуть внешнюю поверхность двигателя металлической трубой — топливопроводом и использовать ее в качестве испарителя для жидкого топлива. Здесь пригодится конструкция двигателя с горячей наружной стенкой. Еще одна вещь, о которой стоит подумать, это система смазки. В простейшем случае это может иметь форму маленькой бутылки с небольшим количеством масла и двумя трубами — одна труба для снятия давления с компрессора и направления его в баллон, а другая труба для направления масла из баллона под давлением и направления его в задняя балка. Без смазки двигатель может работать только в течение от 1 до 5 минут в зависимости от температуры NGV (чем выше температура, тем меньше время работы). После этого Вам необходимо самостоятельно смазать подшипники. А с добавленной системой смазки двигатель может работать долго.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Замена крыльчатки холодной части турбины

крыльчатка холодной части турбины

Это совершенно не технологичное понимание.
Колесо компрессора холодной части, так называемый компрессор, поставляется с завода изготовителя (китайского, английского или американского), как одна отдельная запчасть уже отбалансированная.

Если нам удается, невыпрессовывая вал турбины, снять старое колесо компрессора и засунуть вместо него новое колесо безусловно будет дисбаланс. Этот дисбаланс может в первую очередь — развалить турбокомпрессор.
На сегодняшний момент старые типы турбин уже себя отжили, и мы говорим сейчас о скоростях вращения турбокомпрессора до 300 тыс оборотов минуту, а значит допуски баланса исчисляются миллиграммами, что требует исключительно точной балансировки.

На ютубе есть много роликов о том, как человек сам разбирает турбину, меняет ремкомплект или вал с колесом и говорит, что у него турбина работает.

Только почему-то нет роликов допустим через неделю – месяц эксплуатации такой турбины и во что это вылилось.
Понятно желание автовладельцев сэкономить деньги и самому провести работу, но из практики получается очень маленький процент успешного самодельного ремонта.

Если рискнуть после такого ремонта отправиться в дальнюю дорогу, турбина устанет от дисбаланса и ломает вал, что приведет к печальным последствиям, вплоть, до полной замены двигателя, на новый. Лучше потратиться на качественный ремонт турбины, чем рисковать двигателем.

У всех производителей турбин и картриджей нет такой услуги, как замена крыльчатки без балансировки. Как минимум должен быть финиш-баланс на балансировочном станке, с выведением всех допусков к этой турбине.

Ремонт дизельной турбины своими руками: разборка и сборка

Установка турбонагнетателя на дизель повышает энергоэффективность, крутящий момент, мощность и приемистость мотора. Длительная эксплуатация и несвоевременное техобслуживание приводят к поломке узла. При наличии слесарных навыков и инструмента можно выполнить ремонт турбокомпрессора своими руками. Для этого надо изучить ее устройство и ознакомиться с инструкцией по ремонту.

Устройство турбокомпрессора

Агрегат состоит из трех основных секций:

  • горячая (турбинная), работающая с выхлопными газами;
  • компрессорная, подающая сжатый воздух в коллектор;
  • картридж (подшипниковый узел), передающий момент вращения от турбины к крыльчатке компрессора.

Устройство турбокомпрессораУстройство турбокомпрессора

В турбинной или компрессорной части имеется регулировочная системы, которая управляет действием перепускного клапана. Крыльчатка компрессора надевается на вал, который является продолжением турбины. Смазка к подшипникам поступает по масляным каналам.

Учитывая не слишком сложное устройство и высокую стоимость узла, ремонт турбины своими руками на дизеле позволяет неплохо сэкономить.

Как определить поломку

О об этой необходимости ремонта сигнализируют следующие признаки:

  • Повышение расхода масла, которое попадает в цилиндры. Этому может сопутствовать появление синего дыма из выхлопной.
  • Потеря мощности из-за попадания воздуха через уплотнители патрубков.
  • Изменение состава топливно-воздушной смеси. Это выражается в повышенном расходе топлива и появление черного дыма из выхлопной трубы.
  • Повышенный шум турбины из-за износа подшипников картриджа.

Если вы заметили хотя бы один из признаков, настало время проверить работу нагнетателя и выполнить ремонт турбины своими руками на дизеле.

Что понадобится для ремонта

Ремонт турбины дизельного двигателя своими силами требует наличия инструмента, запчастей и продвинуты слесарных навыков. При их отсутствии дешевле обратиться к профессионалам. Сборка в кустарных условиях может привести к попаданию песчинок в агрегат. В результате он окончательно выйдет из строя. Если вы уверены в своих силах, можно приступать к работе.

Перед тем, как отремонтировать турбину, следует подготовить ремкомплект. Понадобятся следующие детали:

  • комплект вкладышей;
  • сальники;
  • винты;
  • шурупы;
  • шайбы.

Понадобится и следующий набор инструмента:

  • торцевые и рожковые ключи;
  • отвертки;
  • кусачки с раздвижными губками;
  • фигурная правка;
  • съемник;
  • киянка.

Этого достаточно, чтобы восстановить турбину своими руками.

Разборка

Ремонт турбины дизельного двигателя легковушки или грузовика своими руками начинается с ее демонтажа. Для этого нужно выполнить такие операции:

  • открутить болты или убрать стопоры, фиксирующий корпуса компрессорного и турбинного узла;
  • если узел прикипел, его нужно аккуратно «разбудить» при помощи постукивания киянкой;
  • снять улитку.

Сначала нужно проверить подшипники картриджа: продольный люфт недопустим, поперечный — только очень малый. И

Стопорное кольцо компрессора снимается с использованием кусачек с раздвижными губками. Обратная сторона вала при этом зажимается фигурной правкой.

При разборке не забывайте о левой резьбе на валу.

Видео по разборке дизельной турбины:

Как отремонтировать турбину дизеля своими руками

Компрессорное колесо невозможно снять без специального съемника. Чтобы предотвратить разбалансировку узла, при сборке нужно устанавливать детали в то же положение. Для этого нанесите отметки на колесо и гайке.

Чтобы качественно отремонтировать турбину своими руками, нужно тщательно очистить все детали и проверить их состояние.

Износ втулок — основная причина люфта картриджа. Чтобы заменить их, нужно снять стопорные кольца и открутить болты крепления. Также придется менять вкладыши, которые удерживаются стопором. Перед снятием колец уплотнителя следует очистить нагар с вала картриджа и крыльчатки.

В случае, если заметен износ вала, изношенные вкладыши номинального размера меняются ремонтными. Вал придется обточить под ремонтный размер и отбалансировать. Если выработка имеется только на вкладышах, можно поставить новые номинального размера. На этом ремонт картриджа турбины нагнетателя своими руками окончен.

Сборка турбокомпрессора

После завершения ремонта остается собрать агрегат и поставить его на место. Не забудьте проверить плотность посадки стопорных колец при установке их на картридж. Если они не сядут в гнезда, конструкция рассыпется во время работы.

Сборка турбокомпрессораСборка турбокомпрессора

Вкладыши, втулки и маслосъемные кольца вала смазываются маслом перед установкой. Это гарантирует отсутствие задиров при первом пуске.

  1. Сборка деталей производится в порядке, обратном их снятию на предыдущем этапе.
  2. Гайка крепления крыльчатки затягивается с усилием 5 Н-м, если другое не предусмотрено инструкцией изготовителя.
  3. Собранное устройство ставится на двигатель и фиксируется винтами или стопорами.

Видео по сборке и балансировки:

Характерные ошибки

Перед тем как отремонтировать современную турбину дизеля своими руками, нужно помнить о распространенной ошибке новичков. Между корпусом, втулкой и валом картриджа имеются зазоры, которые заполняются маслом во время работы. Они позволяют компенсировать эффект демпфера.

Неопытные слесари расценивают этот как завышенный люфт и устанавливают втулки нестандартных размеров, которые монтируют «в натяг». В результате вращение ротора затрудняется, а втулка интенсивно изнашивается из-за демпферного эффекта и отсутствия смазки. Нередко это становится причиной деформации вала.

Также нельзя забывать о балансировке, которая выполняется на специальном стенде. Самостоятельно балансировать деталь реально, но это требует навыков и внимания. Ошибки ремонта и сборки приводят к необратимой поломке дорогостоящего узла. Поэтому при любом затруднении лучше обратиться к специалистам.

принцип работы, устройство, кпд, схема

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Как работает паровая турбина?

В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.

На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:

  • твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
  • полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
  • по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
  • вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
  • отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.

Примечание. В лучшем случае КПД паровой турбины достигает 60%, а всей системы – не более 47%. Значительная часть энергии топлива уходит с теплопотерями и расходуется на преодоления силы трения при вращении валов.

Ниже на функциональной схеме показан принцип работы паровой турбины совместно с котельной установкой, электрическим генератором и прочими элементами системы:

Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений. Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении. Как это происходит, отражает рабочая схема паровой турбины:

Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор. Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:

1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Заключение

К сожалению, конструктивно паровые машины достаточно сложны и сделать дома турбину, чья мощность достигала хотя бы 500 Вт, весьма затруднительно. Если стремиться к тому, чтоб соблюдалась схема работы турбины, то затраты на комплектующие и потраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, проще купить готовый дизель-генератор.

Ремонт дизельной турбины своими руками — что для этого нужно и как его сделать

В домашних или гаражных условиях самостоятельно разбирать и ремонтировать турбину не рекомендуется. Основная причина – отсутствие специального оборудования для диагностики и починки агрегата. Реставрация турбин в мастерской проходит в максимально стерильных условиях, так как мельчайшая песчинка, попавшая в запчасть, может за считанные минуты вывести её из рабочего состояния. Можно ли ремонтировать турбину самостоятельно и как это делается, расскажем в следующих тезисах:

  1. Что понадобится для ремонта турбины.
  2. Как разобрать и собрать систему наддува.

Что нужно для реставрации турбонагнетателя

Если владелец авто уверен в своих возможностях, то для процедуры восстановления турбокомпрессора ему пригодятся такие приспособления:

  • Вкладыши нескольких размеров;
  • Сальники;
  • Кольца;
  • Винты;
  • Шайбы;
  • Шурупы;
  • Запасные вкладыши;
  • Ключи торцевые и рожковые;
  • Отвертки;
  • Киянка;
  • Съемник;
  • Фигурная плавка;
  • Кусачки с раздвижными губками.

Разобрать железо проще, чем собрать. Желательно обозначать все места креплений элементов турбины, и их расположение относительно друг друга.

Чтобы понимать возможные отказы механизма, следует предварительно изучить конструкцию турбины дизельного мотора. Система турбонаддува включает:

  • Крыльчатку компрессора;
  • Лопастное колесо нагнетателя;
  • Опорный вал;
  • Узел подшипников;
  • Смазывающий штуцер;
  • Регулятор управления давление наддува.

Разборка и сборка турбины

Собственноручный ремонт турбины дизельного двигателя следует начать с разборки. При этом выполняются следующие действия:

  • Откручиваются болты или устраняются защёлки, которые фиксируют корпус турбинного и компрессорного узла;
  • При условии сильного “приклеивания” узла, его необходимо «пробудить» киянкой методом постукивания;
  • Снять «улитку» турбины;
  • Проверяются подшипники в картридже – не допускается продольный люфт, поперечный – очень слабый;
  • Снимается стопорное кольцо компрессора, применяя острогубцы (кусачки). Обратную сторону вала зажать с помощью фигурной плавки;
  • Разбирая агрегат, стоит помнить о левой резьбе на валу;
  • Снимается компрессорное колесо съемником;
  • При износе втулок, спускаются стопорные кольца и откручиваются шурупы крепления;
  • Делается замена вкладышей, которые удерживает стопор. Перед тем, как снимать кольца, очищается сажа с вала крыльчатки и картриджа;
  • При изнашивании вала, старые вкладыши стандартных размеров заменяются на ремонтные. Вал обтачивается под параметры ремонта и балансируется.

ремонт турбины своими руками

Когда починка завершена, нужно собрать турбину дизельного двигателя обратно и закрепить её на месте. Обязательно перепроверить плотность посадки стопорных колец, устанавливая их на картридж. Если стопорные кольца не сядут на гнезда, система может рассыпаться в процессе реставрации. Втулки, вкладыши и маслосъемные кольца вала смазать маслом перед монтажом, что будет гарантией отсутствия задиров при стартовом запуске. Элементы турбины собираются в обратном порядке, то есть, что снималось последним, собирается первым. Гайку крепления крыльчатки затягивают с усилием 5 Н-м, если изготовитель турбины не указал иное в руководстве по эксплуатации. Обновленный турбокомпрессор устанавливается на дизельный мотор, проводится его фиксация с применением винтов или стопоров.

Тонкости ремонта турбины своими руками, видео:

Однако во избежание ошибок при ремонте турбины, настоятельно рекомендуется обратиться в сервисный центр. Специалисты данного профиля легко разберут и соберут систему наддува, смогут заметить зазоры и люфты, и проведут балансировку на специально подготовленном стенде. При неправильной и невнимательной реставрации, узел сломается необратимо.

Читайте также: Стоит ли ремонтировать турбину, плюсы восстановления турбины.

Ремонт турбины своими руками, конструкция, причины поломки

Для многих автолюбителей, которые любят мощность и скорость, вопрос покупки машины с турбированным двигателем является весьма принципиальным.

В свою очередь, задача турбокомпрессора – подача большего объема воздуха в цилиндры двигателя и как следствие, увеличение мощности последнего.

Единственный недостаток столь полезного элемента – частый выход из строя, поэтому каждый автолюбитель должен уметь производить хотя бы минимальный ремонт турбины.

Особенности конструкции турбины двигателя

Конструктивно турбокомпрессор – это весьма простой механизм, который состоит из нескольких основных элементов:

  1. Общего корпуса узла и улитки;
  2. Подшипника скольжения;
  3. Упорного подшипника;
  4. Дистанционной и упорной втулки.

Корпус турбины выполнен из сплава алюминия, а вал – из стали.

Турбина

Следовательно, при выходе из строя данных элементов единственным верным решением является только замена.

Принцип работы турбины

Большую часть повреждений турбины можно с легкостью диагностировать и устранить. При этом работу можно поручить профессионалам своего дела или же сделать все своими руками.

В принципе, ничего сложного в этом нет (как производить демонтаж и ремонт турбины мы рассмотрим в статье).

Основные неисправности и их причины

Как показывает практика эксплуатации, всего можно выделить две основные причины поломок – некачественное или несвоевременное ТО.

Если же по плану производить технический осмотр, то турбина будет работать долго и без особых нареканий со стороны автолюбителей.

Итак, на сегодня можно выделить несколько основных признаков и причин выхода из строя турбины:

  • 1. Появление синего дыма из выхлопной трубы в момент повышения оборотов и его отсутствие при достижении нормы. Основная причина такой неисправности – попадание масла в камеру сгорания из-за течи в турбине.

Появление синего дыма из выхлопной трубы

  • 2. Черный дым из выхлопной трубы — свидетельствует о сгорании топливной смеси в интеркулере или нагнетающей магистрали. Вероятная причина – повреждение или поломка системы управления ТКР (турбокомпрессора).

Черный дым из выхлопной трубы

Дым из выхлопной трубы белого цвета

  • 4. Чрезмерный расход масла до одного литра на тысячу километров. В этом случае нужно обратить внимание на турбину и наличие течи. Кроме этого, желательно осмотреть стыки патрубков.

Расход масла через турбину

Подтекание масла в турбине

Подтекание масла в турбине

  • 5. Динамика разгона «притупляется». Это явный симптом нехватки воздуха в двигателе. Причина – нарушение работы или поломка системы управления ТКР (турбокомпрессор).
  • 6. Появление свиста на работающем двигателе. Вероятная причина – утечка воздуха между мотором и турбиной.
  • 7. Странный скрежет при работе турбины часто свидетельствуют о появлении трещины или деформации в корпусе узла. В большинстве случаев при таких симптомах ТКР долго не «живет» и дальнейший ремонт турбины может оказаться неэффективным.

Подтекание масла в турбине

  • 8. Повышенный шум в работе турбины может стать причиной засорения маслопровода, изменение зазоров ротора и задевание последнего о корпус турбокомпрессора.
  • 9. Увеличение токсичности выхлопных газов или расхода топлива часто говорит о проблемах с поставкой воздуха к ТКР (турбокомпрессору).

Особенности демонтажа турбины

Чтобы провести ремонт турбины своими руками, ее необходимо демонтировать.

Делается это в следующей последовательности:

  • 1. Отсоедините все трубопроводы, которые идут к турбине. При этом стоит быть крайне осторожным, чтобы не повредить сам узел и смежные с ним устройства.

Подтекание масла в турбине

Подтекание масла в турбине

  • 2. Снимайте турбинную и компрессорную улитки. Последняя демонтируется без проблем, а вот турбинная улитка зачастую прикреплена весьма плотно.

Устройство турбины

Здесь демонтаж можно выполнить двумя способами – методом киянки или же с помощью самих крепежных болтов улитки (путем постепенного отпускания их со всех сторон).

Устройство турбины

При выполнении работы необходимо быть очень осторожным, чтобы не повредить колесо турбины.

  • 3. Как только работа по демонтажу улиток завершена, можно проверить наличие люфта вала. Если последний отсутствует, то проблема неисправности не в вале.

Люфт вала турбины

Снова-таки, небольшой поперечный люфт является допустимым (но не более одного миллиметра).

  • 4. Следующий этап – снятие колес компрессора. Для выполнения этой работы пригодятся пассатижи. При демонтаже учитывайте, что компрессорный вал в большинстве случаев имеет левую резьбу.

Люфт вала турбины

Для демонтажа компрессорного колеса пригодится специальный съемник.

демонтаж компрессорного колеса

  • 5. Далее демонтируются уплотнительные вкладыши (они расположены в углублениях ротора), а также упорный подшипник (крепится он на трех болтах, поэтому проблем со снятием не возникает).

упорный подшипник турбины

  • 6. Теперь можно снимать вкладыши с торцевой части – их крепление осуществляется с помощью стопорного кольца (при демонтаже иногда приходится повозиться).

упорный подшипник турбины

упорный подшипник турбины

Подшипники скольжения (со стороны компрессора) фиксируются с помощью стопорного кольца.

7. При выполнении работы по демонтажу необходимо (вне зависимости от поломки) хорошо промыть и почистить основные элементы – картридж, уплотнители, кольца и прочие комплектующие.

Особенности ремонта

Как только демонтаж завершен, можно делать ремонт. Для этого под рукой должен быть специальный ремкомплект, где есть все необходимое – вкладыши, метиз, сальники и кольца.

специальный ремкомплект для турбины

Проверьте качество фиксации номинальных вкладышей. Если они болтаются, то их нужно проточить и провести балансировку вала.

При этом вкладыши желательно хорошо почистить и смазать моторным маслом.

Стопорные кольца, расположившейся внутри турбины, необходимо установить в картридж. При этом проследите, чтобы они оказались на своем месте (в специальных пазах).

специальный ремкомплект для турбины

После этого можно монтировать вкладыш турбины, предварительно смазав его маслом для двигателя. Фиксация вкладыша производится стопорным кольцом.

Следующий шаг – монтаж компрессорного вкладыша, после чего можно вставлять хорошо смазанную втулку.

Далее надевайте на нее кольцо пластину и хорошенько затяните болтами (без фанатизма).

Установите грязезащитную пластину (крепится с помощью стопорного кольца) и маслосъемное кольцо.

специальный ремкомплект для турбины

специальный ремкомплект для турбины

Остается только вернуть на место улитки. Вот и все.

В данной статье указан общий алгоритм работ по разборке и сборе турбины. Безусловно, в зависимости от типа последней, частично данный алгоритм будет изменен, но общих ход работ будет идентичный.

Ну а если выявлена серьезная поломка, то лучше сразу заменить старую турбины на новую.

Замена старой турбины на новую

Выводы

При отсутствии серьезных дефектов ремонт турбины занимает не более нескольких часов времени. Зато с помощью подручных инструментов и подготовленного заранее материала можно сделать весьма качественный и бюджетный ремонт.

Как сделать паровую турбину. Самодельный приводной нагнетатель на ваз своими руками Как сделать крыльчатку для турбины

Header>Паровая турбина. Первые упоминания о паровых двигателях относятся к началу первого века до нашей эры. Относительно простой принцип действия сделал этот паровой двигатель основным для человечества на сотни лет. Попробуем изготовить простейшую модель паровой турбины своими руками.

Нам понадобится:

  • Консервная банка. Я взял маленькую от томатной пасты.
  • Жестяные крышки от банок большего диаметра.
  • Жестяная полоска. Ее можно вырезать из боковины банки.
  • Заклепки диаметром 3мм и длинной 7 и 14мм.
  • Винт с гайкой М5.
  • Алюминиевая проволока.
  • Свечка. В место свечи лучше использовать таблетку сухого горючего или спиртовку.

Из крышек вырезаем два кружочка. Один подгоняем под размер банки, которая будет паровым котлом. Второй будет турбиной. Его размер выбираем на свое усмотрение, в зависимости от размера всей конструкции. Длинную заклепку, которая будет форсункой с одной стороны обстучать молотком и уменьшить диаметр до 0.6-0.7мм.

Делаем в крышке две дырки: под форсунку и под заливное отверстие. Заливное отверстие располагаем чуть с боку, чтобы турбина не мешала завернуть винт.

Припаиваем к крышке гайку и форсунку из заклепки. Эти заклепки делают из алюминия, по этому придется использовать либо универсальную паяльную жидкость, либо специальный флюс для пайки алюминия. Я использовал Ф59А.

Припаиваем крышку к банке. Надо заметить, что почти все современные консервные банки изготавливаются с дополнительным полимерным покрытием, по этому все детали перед пайкой необх

Конструкция турбин

и центробежных насосов: введение в турбомашинное оборудование

Поскольку население мира продолжает расти, растет и потребность в энергии. В течение некоторого времени большинство обычных устройств в нашем доме, на работе и даже в социальной жизни полагаются на питание. Развивающиеся страны также в гораздо большей степени полагаются на тяжелую промышленность, стремясь повысить благосостояние. Однако актуальной темой является изменение климата и возобновляемые источники энергии. Источники чистой энергии можно использовать, чтобы обеспечить население энергией, необходимой для поддержания его образа жизни, без использования жизненно важных ресурсов.Но как именно вырабатывается эта энергия?

Для производства возобновляемой энергии используются такие природные ресурсы, как ветер, солнце, гидроэнергия и потенциальная энергия. Как правило, естественное движение воздуха или водных ресурсов, таких как реки и регионы с сильным ветром, преобразуется в электрическую энергию с помощью механического тела, которое индуцирует электродвижущую силу (ЭДС), за исключением химических или солнечных, энергия которых используется другими способами. Большинство промышленных применений, таких как паровые турбины, атомные станции и ветряные турбины, полагаются на этот тип преобразования.Подобно тому, как велась гонка за электромобилями в попытке уменьшить зависимость населения от экологически вредных ископаемых видов топлива, растет спрос на более чистые методы производства энергии. Хотя в настоящее время основным источником энергии в мире является уголь (почти 40%) по сравнению с примерно 6% возобновляемой энергии, все больше стран ищут возобновляемые ресурсы, чтобы заменить его.

В этом исследовании мы сосредоточимся на одном более экологичном методе, на который приходится около 16% мирового производства электроэнергии: гидроэнергетике.Использование энергии из источников воды стало возможным благодаря водяным турбинам и насосам, таким как центробежные насосы и их компоненты лопастного насоса. Здесь мы предлагаем вводные сведения о турбинах и насосах в турбомашинах.

Типы конструкций водяных турбин

Существует три типа водяных турбин, о которых вы можете найти дополнительную информацию в этом обзоре типов конструкции турбин. Эти три типа:

  • Импульсные турбины, включая турбины Pelton, Turgo, и турбины перекрестного потока
  • Реакционные турбины, включая пропеллерные турбины, турбины Каплана и турбины Фрэнсиса
  • Гравитационные турбины, включая водяные колеса с перерегулированием и винт Архимеда, который представляет собой насос, часто используемый в качестве реверсивной турбины.

CFD analysis shows fluid flow through a centrifugal pump with impeller pump blades inside Моделирование потока жидкости в конструкции водяной турбины

В импульсных турбинах струи жидкости сталкиваются с набором изогнутых лопастей, которые изменяют направление их скорости и обменивают импульс; это применяет силу к лезвиям, создавая крутящий момент, который позволяет лезвиям вращаться.Затем вращение создает ЭДС из-за электромагнитной индукции.

Для сравнения, реакционная турбина приводится в движение изменением давления жидкости при ударе о гребные винты или лопасти погруженной турбины. Падение давления внутри турбины преобразует существующую потенциальную энергию в кинетическую энергию, приводящую в движение гребные винты турбины. Турбинам этой категории требуется кожух для постоянного поддержания давления жидкости.

Совместно с аналогичными механизмами турбомашин, турбины работают, чтобы уменьшить энергию в системе, в то время как насосы стремятся увеличить энергию потока жидкости.Чтобы объяснить, как работают насосы, давайте сосредоточимся на очень популярной конструкции насоса; центробежный насос.

Центробежный насос; Популярный выбор крыльчатого насоса

Centrifugal pump CFD analysis with impeller pump component inside Центробежный насос CFD-анализ

Как правило, в промышленности центробежные насосы используются для перекачки сточных вод, обработки пищевых продуктов или очистки воды. Фактически, почти 85% производимых сегодня насосов — это центробежные насосы. Вероятно, это связано с их многочисленными возможностями и простотой масштабирования для более крупных приложений.Центробежный насос может быть легко адаптирован в зависимости от того, с какой жидкостью они будут перекачивать, присутствуют ли низкие скорости потока и, следовательно, требуется повышенное давление, или ориентация, в которой они будут установлены. Это привело к тому, что многие дополнительные подтипы центробежных насосов получили собственное имя. Их размер и дизайн могут различаться в зависимости от приложения, для которого они используются, но их рабочий механизм остается прежним.

Насос этого типа преобразует энергию вращения, например, от двигателя, в энергию жидкости.Двумя наиболее важными его компонентами являются рабочее колесо насоса внутри, вращающийся элемент с несколькими лопастями и внешний корпус, который обеспечивает отсутствие потери давления. Вода поступает в центробежный насос в осевом направлении через проушину в корпусе и попадает на лопасти рабочего колеса насоса внутри.

Для того, чтобы центробежный насос работал наилучшим образом, необходимо внести множество изменений в конструкцию и провести испытания. Физическая оптимизация конструкции потребует много человеческих ресурсов и времени. Чтобы сократить эти затраты на этапе проектирования, нам понадобится инструмент виртуального тестирования, который позволит нам быстро и надежно вносить изменения.CFD дает нам это преимущество. Анализ CFD может помочь прогнозировать и визуализировать поток жидкости (воды) внутри насоса, а также дает нам представление о том, где мы можем оптимизировать конструкцию, даже до производства самого насоса. В следующем разделе мы обсудим, как CFD можно использовать для оптимизации рабочего колеса насоса.

Как работает крыльчатый насос?

Ключевым элементом центробежного насоса является его рабочее колесо, поскольку оно передает энергию от двигателя насоса к жидкости. Крыльчатый насос полагается на инерцию, естественную тенденцию объекта или жидкости двигаться по прямой линии при круговом движении.Вода, попадая на лопасти крыльчатки, естественным образом движется наружу в направлении, касающемся радиуса. Это создает скорость, которая преобразуется в давление в результате удержания жидкости корпусом насоса. Крайне важно, чтобы конструкция любого рабочего колеса насоса была оптимизирована для обеспечения максимально эффективной работы. Рабочее колесо может иметь один, два или не иметь внешнего кожуха (покрытия над лопастями), спиральную камеру или диффузор для улавливания давления и может позволять жидкости попадать на одну или обе стороны лопастей.Это означает, что крыльчатый насос может иметь множество различных конструкций, и инженеру или проектировщику необходимо выяснить, какой из них лучше всего подходит для применения.

Анализ переходных процессов может быть проведен на рабочем колесе насоса для проверки эффективности с использованием таких данных, как момент инерции рабочего колеса насоса. Для уже существующих насосов он часто предоставляется поставщиком, но на этапе проектирования можно оценить момент инерции. Анализ потока жидкости, проведенный в конструкции лопастного насоса, может многое рассказать о том, как он будет вращаться, с какой скоростью и выделяемой энергией.Это может помочь инженеру решить, следует ли изменить конструкцию лопастного насоса, например, путем добавления дополнительных лопастей или снятия внешнего кожуха, если он не нужен.

Fluid flow analysis show water move around the impeller pump blades of a centrifugal pump CFD помогает визуализировать обтекание лопастей рабочего колеса центробежного насоса.

Несмотря на схожесть операций, насосы, включая центробежные насосы, и их рабочие колеса имеют схожие конструктивные характеристики, что приводит к противоречивым применениям. Теперь, когда стало ясно различие между двумя механизмами турбомашин, мы перейдем к изучению того, как можно оптимизировать конструкцию турбины для гидроэнергетических приложений.

Оптимизация конструкции водяной турбины

Можно по-разному адаптировать конструкцию гидротурбины для соответствия всем типам топографии; океаны, пляжи, плотины или водопады и т. д. Где бы ни использовалась вода в качестве источника, есть потенциал для извлечения энергии.

Colorful CFD analysis shows fluid move around the blades in a water turbine Узнайте, как Designcraft оптимизировал водяную турбину с помощью CFD здесь.

Дизайн новой турбины начинается с простой идеи, которая затем превращается в концепцию, требующую тестирования, создания прототипа и оптимизации.Самый эффективный способ протестировать продукт перед созданием прототипа — использовать возможности моделирования, будь то структурный анализ (FEA) таких деталей, как лопасти гидротурбины, или вычислительная гидродинамика (CFD) для оценки того, как жидкость течет вокруг них. В основном тестирование производительности турбины основывается на таких свойствах, как сила, входящая в турбину, скорость лопастей, выходная мощность и скорость выходящего потока.

Физика водяных турбин

Для расчета крутящего момента, действующего на водяную турбину, сначала необходимо оценить обмен импульсом.На рисунке ниже показана изогнутая лопасть, струя которой входит и выходит под определенными углами. Следовательно, обмен импульсом происходит за счет изменения вектора скорости (направления).

turbine blade Лопатка турбины

Второй закон Ньютона гласит, что сила — это просто изменение количества движения, которое может быть изменением направления или скалярным изменением:

The Second Law of Newton

Посчитав изменение количества движения, можно вычислить силы, действующие на лопатки турбины.

Шаг 1:

Найдите компоненты x и y вектора относительной скорости на входе с помощью тригонометрии:

Velocity vectors

Шаг 2:

Найдите компоненты x и y вектора относительной скорости на выходе (выходная скорость):

Velocity vectors

Шаг 3:

Найдите силу, передаваемую между струей и лопаткой турбины в направлении оси x. Сила равна массовому расходу, умноженному на изменение скорости в x-направлении.Кроме того, для расчета массового расхода необходимо умножить плотность жидкости на площадь поперечного сечения струйного потока, а затем на скалярное значение входящей скорости:

Mass flow rate equation

Шаг 4:

Найдите силу, передаваемую между струйным потоком и лопаткой турбины в направлении y, повторяя тот же процесс, что и в шаге 3:

Equation of force

Шаг 5:

Чтобы найти полную силу, приложенную к лопатке турбины, мы должны вычислить результирующую силу:

Total scalar force

Чтобы найти угол наклона (α) равнодействующей силы:

Inclination angle

Как рассчитать относительную скорость

Во время работы турбины лопасти вращаются вокруг оси с определенной скоростью.Чтобы рассчитать эффективную силу, приложенную к лопастям, необходимо рассчитать относительную скорость набегающей струи. Расчет должен определить величину и направление относительной скорости с использованием метода треугольника скоростей.

velocity triangles used to optimize water turbine design Треугольники скорости

U: Скорость лопасти
Va1-in: Абсолютная скорость входящего потока струи
Va2-out: Абсолютная скорость выходящего потока струи
V1rel-in: Относительная скорость входящего потока струи, которая является суммой Векторы скорости U и Va1-in
V2rel-in: Относительная скорость выходящего струйного потока, которая является суммой векторов скорости U и Va2-out

Выходная мощность

Движущая сила турбины:

Calculation used to calculate power output of impeller pump or water turbine

Расчет КПД водяной турбины

Чтобы вычислить эффективность водяных турбин, мы должны найти отношение выходной мощности к кинетической энергии привода.

calculations used to determine efficiency of an impeller pump or water turbine

Единицы СИ
Сила (: (Н)
Плотность (: (кг / м3)
Площадь поперечного сечения струи (Ac): м2)
Скорость: м / с
Углы: Градусы
Массовый расход: кг / с

Заключение

Как введение в турбомашинное оборудование, теперь должно быть ясно существенное различие между турбинами и насосами; поскольку турбины используются для создания энергии из движения жидкости, а насосы используются для создания движения жидкости с использованием энергии. Для расчета КПД гидротурбины требуется множество физических уравнений, в том числе соотношение выходной мощности ее лопастей и кинетической энергии привода.Используя эти результаты, можно оптимизировать конструкцию гидротурбины или сравнить ее с другими типами турбин, чтобы выбрать ту, которая подходит для конкретного применения. Хотя упомянутым законам, расчетам и уравнениям в некоторых случаях уже много веков, они все еще актуальны сегодня и позволяют создавать конструкции, которые будут определять будущее. А благодаря новым методам, таким как моделирование и автоматизированное проектирование, инженеры получают более простые, интуитивно понятные и более эффективные инструменты, которые они могут использовать в процессе проектирования.

Заинтересованы в дополнительных ресурсах о турбомашиностроении? Прочтите историю о том, как компания American Wind оптимизировала свою ветряную микроветровую турбину с помощью CFD.


.

Турбина, компрессор, крыльчатка, турбина, турбина, компрессор, турбина, для двигателя тепловоза

1 партия = 1000 штук
Материал:

Чугун

Углеродистая сталь

Нержавеющая сталь

алюминий

Латунь

бондарь

Хромированный сплав

Резинка

Диаметр:

0 штук выбрано, всего $ США

Посмотреть детали

Стоимость доставки:
Зависит от количества заказа.
Время выполнения:
Быть предметом переговоров
Настройка:

Индивидуальный логотип
(Мин.Заказ: 10000 Лотов)

Индивидуальная упаковка
(Мин. Заказ: 10000 шт.)

Подробнее

Настройка графики
(Мин.Заказ: 10000 Лотов)
Меньше

,Конструкция крыльчатки водяной турбины

для маломасштабной гидроэнергетики

1 партия = 1000 штук
Материал:

Чугун

Углеродистая сталь

Нержавеющая сталь

алюминий

Латунь

бондарь

Хромированный сплав

Резинка

Диаметр:

0 штук выбрано, всего $ США

Посмотреть детали

Стоимость доставки:
Зависит от количества заказа.
Время выполнения:
Быть предметом переговоров
Настройка:

Индивидуальный логотип
(Мин.Заказ: 10000 Лотов)

Индивидуальная упаковка
(Мин. Заказ: 10000 шт.)

Подробнее

Настройка графики
(Мин.Заказ: 10000 Лотов)
Меньше

,Подгонянная

конструкция крыльчатки турбины водяной турбины ISO 9001 с подвергать механической обработке Кнк для частей насоса

1 партия = 1000 штук
Материал:

Чугун

Углеродистая сталь

Нержавеющая сталь

алюминий

Латунь

бондарь

Хромированный сплав

Резинка

Диаметр:

0 штук выбрано, всего $ США

Посмотреть детали

Стоимость доставки:
Зависит от количества заказа.
Время выполнения:
Быть предметом переговоров
Настройка:

Индивидуальный логотип
(Мин.Заказ: 10000 Лотов)

Индивидуальная упаковка
(Мин. Заказ: 10000 шт.)

Подробнее

Настройка графики
(Мин.Заказ: 10000 Лотов)
Меньше

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *