Многоцилиндровые двс: Многоцилиндровые двигатели

Содержание

Принцип работы и рабочие циклы двигателя автомобиля (ДВС)

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

Принцип работы ДВС — схематично

1. Впуск

По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Сжатие

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Расширение или рабочий ход

В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

4. Выпуск

При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск

При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие

Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход

Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск

Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Двигатель внутреннего сгорания и турбина

Начиная с 17-го века широко используется свойство газа совершать работу при расширении. Устройства, которые преобразуют внутреннюю энергию газа в механическую работу, называются тепловыми машинами. Труд таких известных инженеров и ученых, как Ползунов, Ньюкомен, Джеймс Уатт, Шарль, Мариотт, Авогадро, Бойль, Дальтон, Карно, Клапейрон и, другие, позволил изобрести различные виды тепловых машин. Благодаря экскаваторам, подъемным кранам, станкам и другим механическим устройствам, снабженным тепловыми машинами, за короткое время мы можем выполнить большие объемы работы.

Расширение и работа газа

Газ, расширяясь, может совершать работу. От кастрюльки с кипящей водой, накрытой крышкой, слышен звук постукивающей крышки. Звук возникает благодаря тому, что кипящая вода бурно испаряется. Пар поднимается над водой, занимая пространство между поверхностью воды и крышкой. Расширяясь, пар приподнимает крышку (рис. 1).

Рис. 1. Расширяясь, горячий пар поднимает крышку, совершая работу

Часть пара покидает кастрюльку через образовавшуюся под крышкой щель. И крышка опускается. Этот процесс будет повторяться до тех пор, пока мы не прекратим подогревать кастрюльку.

Главным здесь является то, что нагретый пар (газ), расширяясь, может совершать работу, сдвигая крышку.

Джеймс Уатт в конце 17-го века придумал способ увеличить эффективность использования этого свойства нагретого пара. Он изобрел конденсатор пара, благодаря ему усовершенствовал паровую машину Ньюкомена. Это позволило увеличить ее эффективность в 3 раза.

Четыре вида тепловых двигателей

На сегодня известны такие типы тепловых двигателей (рис. 2):

  1. двигатель внутреннего сгорания,
  2. паровая турбина и газовая турбина,
  3. паровая машина,
  4. реактивный двигатель.

Рис. 2. Виды тепловых двигателей – ДВС, турбина, реактивный и паровой двигатели

Достоинства и недостатки.

Основное достоинство паровой машины – ее относительная простота и хорошие тяговые характеристики независимо от скорости работы. Это позволяет обойтись без редуктора, что выгодно отличает такой двигатель от двигателя внутреннего сгорания, который на малых оборотах недодает мощность. Поэтому паровая машина очень удобна в качестве тягового двигателя, например, на паровозах. К серьезным недостаткам паровых машин относятся их низкий КПД, сравнительно невысокая максимальная скорость, большой вес и постоянный расход топлива и воды. (Ранее требовалось значительное время, чтобы паровой котел дал пар и двигатель заработал; современные котлы позволяют быстро запустить двигатель.)

Превращение энергии в тепловом двигателе

В любом тепловом двигателе по цепочке происходят такие превращения энергии (рис. 3):

  • тепловая энергия топлива преобразуется во внутреннюю энергию газа;
  • нагретый газ расширяется, и совершает работу, охлаждаясь при этом;
  • часть внутренней энергии газа переходит в механическую энергию.

Рис. 3. В тепловом двигателе энергия топлива превращается в механическую энергию

Двигатель внутреннего сгорания (ДВС)

Чтобы представить простой тепловой двигатель, кастрюльку заменим цилиндром, а крышку – металлическим поршнем. Поршень должен плотно прилегать к стенкам отполированного цилиндра, так, чтобы двигаться по нему с минимальным трением. Если в пространство под поршнем поместить газ, то нагреваясь и расширяясь, он сможет сдвинуть поршень. Полученное устройство называется тепловым двигателем.

Поступательное движение поршня с помощью дополнительных механических частей можно преобразовать во вращательное движение рабочего вала.

На сегодняшний день ДВС – это самый распространенный вид тепловых двигателей. В таких двигателях используется жидкое или газообразное топливо – бензин, керосин, спирт, нефть, горючий газ. Топливо в таком двигателе сгорает внутри цилиндра, поэтому его назвали двигателем внутреннего сгорания (ДВС).

Примечание: Паровая машина и, к примеру, двигатель Стирлинга, относятся к двигателям внешнего сгорания. Топливо в таких машинах сгорает за пределами рабочего цилиндра.

Существуют одноцилиндровые и многоцилиндровые двигатели внутреннего сгорания.

По количеству тактов работы двигателя, умещающихся в рабочий цикл, выделяют

  • двухтактные и
  • четырехтактные двигатели.

Как устроен одноцилиндровый ДВС

Рассмотрим, какие части включает в себя одноцилиндровый двигатель (рис. 4).

Рис. 4. Основные части двигателя внутреннего сгорания

Основными частями являются цилиндр и поршень, который может двигаться внутри цилиндра поступательно. Над рабочей поверхностью поршня располагается свеча. В пространство между поршнем и свечой помещаются смесь паров топлива и воздуха. Такой газ называют рабочим телом. Электрическая свеча зажигания вызывает процесс горения топливовоздушной смеси.

Впуск воздуха и паров топлива и выпуск сгоревших газов осуществляется двумя клапанами, которые так и называют – впускным и выпускным.

А шатун соединяет поршень и коленчатый вал. С помощью такого соединения возвратно-поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.

Для эффективной работы двигателя необходимо открывать и закрывать каждый клапан и подавать электричество к свече в нужные моменты времени. Поэтому, клапаны, поршень и свеча работают согласованно. Согласованность их работы реализована с помощью кулачкового механизма и различных датчиков, которые на рисунке не показаны.

Карбюраторные двигатели.

Важной проблемой двигателей внутреннего сгорания является создание топливовоздушной смеси.

В бензиновых двигателях смешение воздуха с топливом происходит в карбюраторе. Обычно состав смеси регулируется за счет изменения расхода топлива, но если требуется богатая смесь (например, при запуске двигателя), то уменьшают (дросселируют) подачу воздуха.

Смесь воспламеняется искрой между электродами свечи зажигания, установленной в головке блока цилиндров. Электрическое питание обеспечивается аккумулятором или небольшим электрическим генератором; высокое напряжение, требуемое для искры, получают с помощью катушки зажигания.

Клапаны четырехтактного двигателя открываются и закрываются кулачковым механизмом, который связан с коленчатым валом зубчатой передачей. Поскольку каждый клапан открывается и закрывается один раз за два оборота коленчатого вала, кулачковый (распределительный) вал вращается в два раза медленнее коленчатого.

Что такое мертвая точка и ход поршня

Вначале познакомимся с понятиями мертвых точек и рабочего хода. Это поможет разобраться, из каких частей состоит рабочий цикл двигателя.

Две мертвые точки — это крайние положения поршня. В этих положениях поршень меняет направление движения на противоположное. Выделяют две мертвые точки – верхнюю и нижнюю (рис. 5). Расстояние между ними называют ходом поршня.

Расстояние между мертвыми точками образует ход поршня

Что происходит внутри цилиндра при работе ДВС

При работе двигателя в цилиндре периодически происходит сгорание смеси топлива и воздуха, а, так же, производится выброс отработанных газов.

Сжатые поршнем газы загораются от электрической искры. Температура горения поднимается до 1800 градусов Цельсия. Поэтому, каждый двигатель внутреннего сгорания дополнительно содержит систему охлаждения.

Раскаленные газы расширяются, давление на поршень и стенки цилиндра резко возрастает. Это давление с силой толкает поршень, приводя его в движение. Усилие передается с поршня на шатун и далее на коленчатый вал, вращая его.

Примечание: Раскаленные газы обладают большим запасом внутренней энергии. Расширяясь, газы охлаждаются, при этом часть их внутренней энергии переходит в механическую работу.

Таким образом, энергия топлива преобразуется во вращение коленчатого вала.

Топливовоздушная смесь.

Для эффективного сгорания топливо и воздух должны быть смешаны в определенной пропорции. Массовое отношение воздух/топливо изменяется от 8:1 до 20:1; смесь называется «богатой», если она содержит избыточное количество топлива, и «бедной», если в ней избыток воздуха. Максимальная мощность достигается на богатой смеси (10:1 или 12:1). Сравнительно бедная смесь (14,5:1 или 15:1) используется чаще и является компромиссом между экономичностью и мощностью.

В некоторых двигателях топливо и воздух перемешиваются в цилиндре неравномерно. Такая «расслоенная» смесь обеспечивает меньшее загрязнение окружающей среды, поскольку вблизи свечи, где концентрация топлива выше, сжигание получается более полным.

Этапы работы четырехтактного ДВС

Теперь перейдем к рассмотрению рабочего цикла двигателя. Весь рабочий цикл состоит из четырех тактов — движений поршня. Двух движений вверх и двух — вниз. Поэтому двигатель называют четырехтактным. Каждому движению поршня вверх, или вниз соответствует половина оборота коленчатого вала (рис. 6).

Рис. 8. Четыре такта работы двигателя внутреннего сгорания

Первый такт – впрыск топлива

Сначала поршень движется вниз (рис. 6а). При этом между поршнем и клапанами создается область пониженного давления. Поэтому, когда открывается впускной клапан, пары топлива и воздух засасываются внутрь цилиндра. Сдвигаясь, поршень через шатун приводит во вращение коленчатый вал, снабженный утяжеляющим его маховиком. Первый такт заканчивается в момент достижения поршнем нижней мертвой точки.

Второй такт – сжатие топливовоздушной смеси

Коленчатый вал продолжает вращение по инерции и увлекает поршень с помощью шатуна. Теперь поршень движется вверх (рис. 6б). Он сжимает смесь топлива и воздуха, находящуюся в объеме над ним. Давление над поршнем повышается и газ разогревается. Процесс сжатия заканчивается в верхней мертвой точке.

Третий такт – рабочий ход

В момент, когда поршень проходит верхнюю мертвую точку и начинает движение вниз (рис. 6в), на свечу зажигания подается высокое электрическое напряжение. Между рабочими электродами свечи проскакивает искра. Эта искра поджигает смесь паров топлива и воздуха. Температура газов поднимается почти до двух тысяч градусов. Давление раскаленного газа на стенки цилиндра и поршень возрастает в тысячи раз. Сила давления толкает поршень, он движется к нижней мертвой точке. Раскаленные газы расширяются и охлаждаются. При этом, они двигают поршень вниз, то есть, совершают механическую работу. Отсюда и название такта – рабочий ход.

Четвертый такт – выброс отработавших газов в окружающую среду

В момент, когда поршень минует нижнюю мертвую точку и, вращение коленчатого вала с помощью шатуна увлекает его вверх (рис. 6г), открывается выпускной клапан. Отработанные газы покидают цилиндр. Это продолжается до момента, когда поршень достигнет верхней мертвой точки. В этот момент полный цикл работы завершается. Двигатель готов к началу нового четырехтактного процесса.

Во время второго и третьего тактов впускной и выпускной клапаны закрыты. Впускной клапан открыт во время первого такта, выпускной – во время четвертого.

Двухтактные ДВС и их особенности

Двигатель называют двухтактным, когда полный цикл его работы совершается за два хода поршня – такта. Пока поршень совершает два хода, коленчатый вал совершает один оборот.

Сжатие и рабочий ход происходят аналогично четырехтактному двигателю. Отличие заключается в процессах впрыска и выпуска отработанных газов. Эти процессы происходят совместно и в течение короткого времени, покуда поршень проходит нижнюю мертвую точку.

Впрыск топливовоздушной смеси и выпуск отработанных газов называется продувкой цилиндра.

Изобрел двухтактный двигатель инженер из Шотландии Д. Клерк в 1881 году. Джозеф Дей и Ф. Кок спустя десять лет в Англии усовершенствовали конструкцию. Двумя годами ранее — в 1879 году, свой двухтактный двигатель независимо от них построил Карл Бенц.

Количество нерабочих ходов поршня в два раза меньше, по сравнению с четырехтактным двигателем. Поэтому потери на трение сократились в два раза.

Но главное преимущество двухтактного двигателя в том, что он обладает в полтора раза большей мощностью при одинаковых с четырехтактным двигателем объемом цилиндра и оборотах двигателя.

Благодаря этому двухтактные двигатели используются на средних и тяжелых морских судах и в авиации. Вал двигателя с валом гребного винта, или воздушным винтом, соединяется без редуктора. В судостроении используют тяжелые малооборотные двигатели. А в конструкциях самолетов, в основном двухтактные роторные двигатели.

Некоторые модели мотоциклов, малолитражных автомобилей, грузовиков и автобусов, так же, оснащаются двухтактными двигателями внутреннего сгорания.

Основной недостаток таких двигателей заключается в том, что их детали работают при более высоких температурах. Это вызывает сокращение срока службы. А в мощных двигателях требует дополнительного охлаждения поршней.

Еще один недостаток заключается в одновременном впрыске топлива и выпуска отработанных газов. При этом пары топлива смешиваются с отработанными газами, полностью исключить такое смешивание не получается. Из-за этого снижается эффективность сжигания топлива в цилиндрах таких двигателей.

Экологические проблемы тепловых машин

Большое влияние на климат имеет состояние атмосферы, в частности наличие углекислого газа и водяного пара. Так, изменение содержания углекислого газа приводит к усилению или ослаблению парникового эффекта, при котором углекислый газ частично поглощает тепло, которое Земля излучает в космос, задерживает его в атмосфере и повышает тем самым температуру поверхности и нижних слоев атмосферы. Явление парникового эффекта играет решающую роль в смягчении климата. При его отсутствии средняя температура планеты была бы не +15 °С, а ниже на 30-40 °С.

Сейчас в мире существует более 300 млн различного вида автомобилей, которые создают более половины всех загрязнений атмосферы.

За 1 год в атмосферу из тепловых электростанций в результате сжигания топлива выделяется 150 млн тонн оксидов серы, 50 млн тонн оксида азота, 50 млн тонн золы, 200 млн тонн оксида углерода, 3 млн тонн феона.

В состав атмосферы входит озон, который защищает все живое на земле от губительного воздействия ультрафиолетовых лучей. В 1982 году Дж. Фарманом, английским исследователем, над Антарктидой была открыта озоновая дыра — временное снижение содержания озона в атмосфере. В момент максимального развития озоновой дыры 7 октября 1987 количество озона в ней уменьшилось в 2 раза. Озоновая дыра, вероятно, возникла в результате антропогенных факторов, в том числе использования в промышленности хлорсодержащих хладонов (фреонов), которые разрушают озоновый слой. Однако исследования 1990 гг. не подтвердили эту точку зрения. Скорее всего, появление озоновой дыры не связано с деятельностью человека и является естественным процессом. В 1992 году и над Арктикой была открыта озоновая дыра.

Если весь атмосферный озон собрать в слой у поверхности Земли и сгустить его к плотности воздуха при нормальном атмосферном давлении и температуре 0 °С, то толщина озонового щита будет всего лишь 2-3 мм! Вот и весь щит.

Преимущества многоцилиндровых двигателей и их устройство

В многоцилиндровых двигателях топливо воспламеняется в различные моменты времени последовательно в нескольких цилиндрах. При этом рабочий вал двигателя вращается более равномерно, ему передается больше энергии. Это позволяет повысить мощность двигателя.

В мопедах и скутерах чаще всего используют одноцилиндровые двигатели (рис. 7).

Рис. 7. Двигатели внутреннего сгорания могут иметь не один цилиндр, а несколько

В мотоциклах – двухцилиндровые. В легковых автомобилях — четырехцилиндровые двигатели. А грузовые автомобили, большие тракторы и спецтехника могут оснащаться восьмицилиндровыми двигателями. Более мощная и грузоподъемная техника, а, так же, речные и морские суда, оснащаются двигателями, имеющими, двенадцать, шестнадцать и, более цилиндров.

Рабочий вал многоцилиндрового двигателя вращается более равномерно и получает энергию от нескольких поршней. Поэтому многоцилиндровые двигатели имеют повышенную мощность.

В сложных двигателях цилиндры располагают, поворачивая один относительно другого на различные углы (рис. 8).

Рис. 8. Несколько цилиндров в двигателе располагают, поворачивая их на различные углы один относительно другого

Имеются такие конструкции двигателей:

  • V-образные, в которых цилиндры располагаются в виде латинской буквы V;
  • рядные, когда несколько цилиндров располагают в ряд один за другим;
  • оппозитные, в которых одни цилиндры развернуты на 180 градусов по отношению к другим цилиндрам и поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку, двигаясь в противоположные стороны;
  • роторные, несколько цилиндров в них располагаются в виде многолучевой звезды, такие двигатели применяются в авиации.

Примечания:

  1. Существуют V-образные двигатели, в которых цилиндры развернуты на 180 градусов. При этом, когда один поршень проходит свою верхнюю мертвую точку, соседний поршень проходит свою нижнюю точку.
  2. В оппозитных двигателях оба поршня двигаются в противоположные стороны — либо расходятся максимально далеко, либо максимально сближаются. Двигаясь, поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку. Поэтому двигатель называется оппозитным.

Роторный двигатель Ванкеля.

Принципиально иной тип двигателя внутреннего сгорания был реализован в 1957 Ф.Ванкелем. Конструктивно двигатель относительно прост и допускает изготовление в любых размерах. Поршни заменены ротором приблизительно треугольного сечения, который вращается в камере специальной формы (поверхность камеры выполнена по эпитрохоиде), в которой размещены свеча зажигания и впускные и выпускные отверстия. Такая конструкция позволяет осуществить четырехтактный цикл без применения специального механизма газораспределения. В этом двигателе можно использовать дешевые сорта топлива; он почти не создает вибраций.

Главное преимущество двигателя Ванкеля – малые размеры при заданной мощности. В двигателе вдвое меньше движущихся частей, чем в поршневом, и, следовательно, он потенциально надежнее и дешевле в производстве.

Паровая турбина

Турбина от двигателя внутреннего сгорания отличается более простым устройством. Основная сложность при изготовлении турбин заключается в создании легких, прочных и эффективных лопаток, приводящих в движение диски и рабочий вал.

Тепловой двигатель, в котором вал двигателя вращается без помощи поршня, шатуна и коленчатого вала, называется паровой турбиной.

Устройство турбины отличается простой конструкцией (рис. 9).

Рис. 9. Турбина состоит из диска с лопатками, рабочего вала и сопел

На вал насажен диск, содержащий на ободе лопатки. На эти лопатки направлены сопла, из них под большим давлением в сторону лопаток подается горячий газ или пар, который вращает лопасти и приводит в движение диск турбины и вал двигателя.

Современные турбины содержат несколько дисков с лопастями, находящихся на общем валу. Пар последовательно проходит лопатки нескольких дисков и каждому передает часть своей энергии. Это повышает эффективность турбины.

В качестве двигателей турбины применяются на больших судах.

Частота вращения турбин может достигать нескольких тысяч оборотов в минуту. На электростанциях вал турбины соединяется с генератором тока, благодаря чему механическая энергия вращения турбины преобразуется в электрическую энергию.

В России изготавливают турбины мощностью до 1,2 миллиардов Ватт.

Выводы

  1. Расширяясь, газ может совершать работу.
  2. Тепловой двигатель — это устройство, которое преобразует внутреннюю энергию газа в механическую энергию.
  3. Двигатель внутреннего сгорания (ДВС) — самый распространенный вид двигателя, жидкое или газообразное топливо в таком двигателе сгорает внутри цилиндра.
  4. Существуют одноцилиндровые или многоцилиндровые ДВС.
  5. Простейший одноцилиндровый ДВС состоит из цилиндра и поршня, свечи зажигания, впускного и выпускного клапанов, шатуна, коленчатого вала с маховиком. Клапаны, поршень и свеча работают согласованно.
  6. Крайние положения поршня называют мертвыми точками — верхней и нижней. Поршень в этих точках меняет направление движения на противоположное.
  7. Ход поршня – это расстояние между мертвыми точками.
  8. С помощью шатуна возвратно-поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.
  9. Через впускной клапан в цилиндр подается смесь топлива и воздуха.
  10. Электрическая свеча зажигает сжатые пары топлива и воздуха.
  11. Выпускной клапан выводит сгоревшие газы из цилиндра.
  12. Два движения поршня вверх и два движения вниз образуют четыре такта работы двигателя: впуск, сжатие, рабочий ход и выпуск.
  13. За время каждого движения поршня вверх, или вниз коленчатый вал совершает половину оборота.
  14. Многоцилиндровые двигатели имеют повышенную мощность, так как рабочий вал двигателя получает энергию от нескольких поршней.
  15. Двухтактные ДВС при одинаковых с четырехтактными двигателями объеме цилиндра и количеству оборотов коленвала, обладают повышенной в 1,5 раза мощностью, но меньшим сроком службы из-за перегрева.
  16. Турбины проще ДВС, они содержат несколько дисков с лопастями, насаженных на общий вал. Пар из сопел проходит лопатки нескольких дисков и заставляет вал вращаться. Мощность таких турбин может достигать 1,2 миллиардов Ватт.

Цикл Карно

Цикл (круговой процесс) — совокупность изменений состояния газа, в результате которых он возвращается в исходное состояние (может выполнять работу). В 1824 году французский физик Сади Карно показал, что выгодным является цикл тепловой машины (цикл Карно), который состоит из двух процессов — изотермического и адиабатного. На рисунке ниже изображен график цикла Карно: 1-2 и 3-4 — изотермы, 2-3 и 4-1 — адиабаты.

В соответствии с законом сохранения энергии работа тепловых машин, которую выполняет двигатель, равна:

А = Q1– Q2,

где Q1 — количество теплоты, которое получено от нагревателя, а Q2 — количество теплоты, которое предано холодильнику. КПД тепловой машины называется отношение работы А, которую выполняет двигатель, к количеству теплоты, которое получено от нагревателя:

η = А/Q =(Q1– Q2)/Q1 = 1 — Q2/Q1.

В работе «Мысли о движущей силе огня и о машинах, которые способны развивать эту силу» (1824) Карно описал тепловую машину под названием «идеальная тепловая машина с идеальным газом, который представляет собой рабочее тело». Благодаря законам термодинамики можно вычислить КПД (максимально возможный) теплового двигателя с нагревателем, который имеет температуру Т1, и холодильником с температурой Т2. Тепловая машина Карно имеет КПД:

ηmax = (T1 – T2)/T1 = 1 – T2/T1.

Сади Карно доказал, что какая угодно тепловая машина реальная, которая работает с нагревателем с температурой Т1 и холодильником с температурой Т2 не способна иметь КПД, который бы превышал КПД тепловой машины (идеальной).

Способ создания многоцилиндрового жидкостного двигателя внутреннего сгорания и двигатель

Изобретение относится к двигателям, использующим жидкость и турбину вместо кривошипно-шатунного механизма превращения давления газов сгорающей смеси во вращательное движение вала двигателя.

Известен ряд технических решений, например по патенту США №3.202.108 или патент DE №2720171 и др., но они непригодны для создания многоцилиндрового агрегата по причине излишней громоздкости и большого расхода горючего.

Вполне подходит для этого только способ по патенту Р.Ф. №2364735, заключающийся в использовании спаренных, взаимно подменяющих друг друга трубных цилиндров, жидкость из которых поочередно подвергается давлению газов из камер сгорания и извергается на турбину. Здесь камеры сгорания расположены вне трубных цилиндров и соединены с ними патрубками, что позволило выполнить цилиндры проточными, не прерывающими поток жидкости в ее кругообороте в гидросистеме двигателя. Внешнее расположение камер сгорания позволило отсекать часть потока в одном из трубных цилиндров и подвергать ее давлению газов из камеры сгорания для этого трубного цилиндра, извергая из него на турбину, тогда как остальной поток жидкости безостановочно движется, заполняя параллельный трубный цилиндр, вытесняя из него газы прошедшего процесса, пока наступит его очередь быть отсеченным и извергать из него жидкость на ту же турбину под давлением газов из его камеры внешнего сгорания. Потоки из цилиндров разделены клапаном.

Жидкостный двигатель по такому способу вполне пригоден для создания мощных силовых стационарных установок, например для ТЭЦ, где вес и габариты не имеют решающего значения. Но для любых транспортных средств такой элементарный двигатель непригоден. Чтобы создать мощный и сравнительно легкий жидкостный двигатель без большого маховика, можно скомплектовать его из нескольких элементарных единиц (блоков), согласованно воздействующих на единый вал двигателя. Однако даже расположение нагнетателей воздуха сбоку от цилиндра не позволяет создать компактный многоцилиндровый двигатель. Отсутствие механической связи работы цилиндра с валом двигателя исключает возможность связать работу цилиндров отдельных элементарных двигателей (блоков) между собой. Нет определителей давления в цилиндрах для согласования их работы, недостаточен способ изменения скорости и ее регулирования, наконец, агрегат из таких отдельных турбин на общем валу будет громоздкий, тяжелый, неэффективный из-за потерь энергии на завихрения жидкости на лопатках входного сопла. Необходим воздушный конденсатор жидкости на выхлопных газов. Все недостатки решены этим способом. В таком двигателе используются не цилиндры, как конструктивное понятие, а трубы, изогнутые по форме, обеспечивающей наилучшее протекание жидкости, наименование их цилиндрами используется по аналогии с цилиндрами ДВС. Элементарный жидкостной двигатель по рабочему циклу является двухтактным: рабочий ход и выхлоп с заполнением.

Конструкция многоцилиндрового жидкостного двигателя создается из нескольких блоков элементарных двигателей, содержащих турбину 1 и спаренные цилиндры 2, поочередно пропускающие поток жидкости то через один, то через другой из них, вытесняя находящиеся там отработавшие газы. Жидкость заполняет объем цилиндра 2 и сразу же вытесняется новой порцией газа на турбину 1. Автоматическое управление работой двигателя осуществляется сжатым воздухом, который обеспечивается нагнетателем, состоящим из пневмоцилиндра 3 и гидропривода 4, связанного с цилиндром 2 двумя каналами, один из которых 5 постоянно открыт в цилиндр 2, а другой откроется только после сжатия воздуха пневмоцилиндром 3 и смещения золотникового поршенька гидропривода 4. Обратный ход обоих поршней нагнетателя обеспечивается за счет штока 6 с надетой на него пружиной (на чертеже не показано). Шток 6 содержит на конце пружинящую (при рабочем ходе нагнетателя) защелку, включающую пневмоклапаны 7, 8 управления двигателем при обратном ходе штока 6. В верхней части цилиндра 2 размещен выхлопной клапан 9, связанный с работой внешней камеры сгорания 10, которая питается горючей смесью от плунжера 11. Камера сгорания 10, при вспышке смеси в ней, выталкивает пробочный поршенек 12, упирающийся подвижно своим донышком в коромысловый рычаг 13, который одним концом (с роликом) захлопывает отсечной клапан 14, а другим — выхлопной клапан 9, отсекая вошедшую в него жидкость от потока, перенаправленного в другой, параллельный цилиндр 2. Плунжер 11 управляется пневмоклапанами 7 и 8 расположенными на другом, параллельном цилиндре 2 и сработает для питания горючим камеры 10, когла в параллельном цилиндре 2 заканчивается процесс вытеснения жидкости на турбину 1. Клапан 7 связан с плунжером 11 последующего блока двигателя, а клапан 8 — с плунжером 11 параллельного цилиндра 2 этого блока. Пневмоцилиндр 3 нагнетателя воздуха должен, воспользовавшись ресрвером 15, обеспечить сжатым воздухом одну камеру сгорания 10, два клапана 7 и 8 с их линиями питания и один плунжер 11 за каждый такт пневмоцилиндра 3. Пневматические клапаны 7 и 8 управляют подготовкой и подачей смеси в камеры 10. Таких клапанов по два на каждом цилиндре 2, причем ближний к штоку 6 управляет подачей смеси в последующий блок двигателя, дальний от штока 6 — в спаренный цилиндр этого же блока. Их место установки определяет момент их срабатывания, так как пружина на штоке 6 при уменьшении давления газов в трубном цилиндре 2 (в связи с расходом жидкости) начнет оттягивать гидроцилиндрик 4 в сторону этих пневмоклапанов 7 и 8 и защелкой на штоке 6 и включит их в работу.

Фактически гидропривод 4 контролирует давление в цилиндре 2 с погрешностью на трение его поршней. Как раз основным решением данного изобретения и является согласование взаимодействий двух, трех и более блоков элементарных жидкостных двигателей, так как здесь нет механической связи между работой цилиндров 2 и валом турбины. Решений найдено путем учета спадания давления в цилиндрах 2 И эта функция возложена на шток 6 гидропривода 4. Он включает в работу последующие блоки при снижении давления в предыдущем блоке вдвое при 2-х блоках, и втрое при трех блоках, т.е. на каждую долю от числа элементарных составляющих, объединенных в один агрегат. Последующие блоки подхватывают нагрузку на валу турбины, компенсировав недостаток давления газов по ходу такта одиночного блока двигателя. Стало возможным создавать многоцилиндровые двигатели любой мощности. Турбины 1 могут быть раздельные на общем валу, но можно применить турбину со сборным ротором, на котором раздельно расположены венцы лопаток каждого блока, разделенные между собой диском, но в общем кожухе со своими соплами. Лопатки следует несколько согнуть по ходу вращения, а концы их напротив; это способствует восприятию динамического напора струи и облегчает отделение жидкости на выходе при поддуве воздухом для ликвидации вакуума.

Входная часть цилиндра 2 содержит наголовник, к которому снаружи крепится своим патрубком камера сгорания 10, а изнутри пробочный поршенек 12 в том же патрубке и связанный с ним коромысловый рычаг 13, воздействующий на отсечной клапан 14 и газовыхлопной 9. Все нагнетатели 3 связаны с ресивером 15, а выхлопные клапаны 9 связаны с конденсатором 16 паров жидкости, возвращаемой обратно в цилиндр 2 из сборника жидкости силой пневмореле, по уровню. Предлагаемый жидкостный двигатель намного экономичнее поршневых двигателей, так как его проточные цилиндры 2 не задерживают поток жидкости и потому нет потерь на последующий разгон ее, а присутствует только дополнительный разгон в цилиндрах за счет энергии горючей смеси, который расходуется на полезное усилие на валу турбины 1. Расход энергии на работу отсечного клапана 14 не превышает затрат ее на распределительную систему поршневых двигателей. Расход энергии на работу нагнетателя воздуха неизбежен как и у всех ДВС, да кроме того производится попутно без торможения жидкости и без снижения ее воздействия на турбину 1. Однако главное преимущество жидкостных двигателей — в уменьшении ядовитых выбросов в атмосферу как из-за уменьшения расхода горючего, так и вследствие исключения в нем ядовитых присадок: жидкость на пробочном поршеньке 12 исключает детонацию. Потому и возможен дизельный цикл на любом горючем, при увлажнении пробочного поршенька 12 брызгами входящего потока, в первый момент заполнения жидкостью цилиндра 2.

Согласно патенту RU 2364735 пневматические элементы, управляющие подготовкой и подачей горючей смеси, работают не от штока 6 «своего» нагнетателя воздуха 3, а от штока оказалось возможным установить пневмоэлемент 7, питающий третий цилиндр на корпусе первого, на половине возвратного хода штока 6, тогда как в конце хода этого штока находится пневмоэлемент 8, питающий второй цилиндр этого же силового блока также как и пневмоэлемент в конце хода третьего нагнетателя воздуха 3 управляет подачей горючей смеси в четвертый цилиндр 2 на четвертом цилиндре, на середине хода штока 6 его нагнетателя воздуха 3, находится пневмоэлемент, питающий плунжер первого цилиндра, обеспечивая замкнутый цикл.

У шестицилиндрового двигателя пневмоэлемент 8 питания третьего цилиндра расположен на корпусе первого, а питающий пятый цилиндр 2- на корпусе третьего. И также пневмоэлемент с шестого цилиндра управляет работой плунжера первого. Каждый пневмоэлемент состоит из клапана, пропускающего воздух в камеры сгорания и одновременно в силовой цилиндр плунжера с горючим. Этот плунжер в конце своего движения обеспечивает зажигание (если не предусмотрено самовоспламенение). Пусковые клапаны-кнопки сразу же блокируются после запуска.

Перед началом работы необходимо заполнить ресивер 15 воздухом под давлением выше рабочего в камерах сгорания. Трубная гидросистема должна быть заполнена водой (или другой негорючей, невспенивающейся, а для холодной погоды и незамерзающей жидкостью) в объеме на один цилиндр и треть турбины меньше полного объема каждого блока двигателя. Трубопроводы горючего должны быть заполнены им. Запуск производится пусковой пневмокнопкой к плунжеру первого цилиндра 2. Турбина 1 состоит их половин корпуса 17 со своими соплами и разделительным диском 18 между лопатками 19 блоков. Лопатки 19 наклонно расположены на роторе 20, чтобы быть перпендикулярно выходному потоку. С истечением жидкости из цилиндра 2 падает давление в нем и пружина нагнеетателя воздуха нагнетателя воздуха вытягивает шток 6 и поршень нагнетателя. Как только шток достигнет пневмоэлемента третьего цилиндра (расположенного на первом цилиндре), то начнет работать и третий цилиндр двигателя. При дальнейшем снижении давления в первом цилиндре его шток включит питание второго, а вскоре шток третьего нагнетателя включит питание четвертого, который, при снижении его давления, наполовину включит питание первого трубоцилиндра. Круг замкнулся.

Скорость вращения турбины зависит от давления, определяемого типом и количеством горючего. Снижение скорости возможно и за счет замедления темпа нагнетателей воздуха путем торможения возврата пневмоцилиндра нагнетателя воздуха путем торможения возврата пневмопоршня нагнетателя воздуха 3, дросселируя выход воздуха из задней камеры.

Охлаждение жидкости в двигателе обеспечивается разветвленной поверхностью трубной системы и дополнительно ребрами на возвратных трубах, хотя не исключена вентиляция в кожухе. Нагнетатели воздуха для создания горючей смеси расположены сверху на цилиндрах и соединены с ними каналами 5 в корпусе гидропривода 4. Отсечные клапаны могут ходить горизонтально при расположении камер за цилиндрами, но это менее эффективно, чем описанный вариант.

Перечень элементов двигателя на чертеже

На фигуре 1 изображен общий вид на 4-х цилиндрового двигателя.

На фиг.2 — схематический разрез одного блока без второго цилиндра.

На фиг.3 — схематический разрез турбины.

На фиг.4 — наголовник цилиндра с камерой сгорания.

Оцифрованные элементы:

1. Ротор комплексной турбины с лопатками.

2. Цилиндр двигателя.

3. Пневматический цилиднр нагнетателя воздуха (компрессор).

4. Гидравлический цилиндр привода нагнетателя воздуха с золотниковым поршеньком.

5. Канал входа жидкости в привод нагнетателя.

6. Шток нагнетателя воздуха с пружиной на нем (не показана).

7. Пневмоклапан для подачи смеси в последующий цилиндр/во второй блок/.

8. Пневмоклапан для подачи горючей смеси в спаренный цилиндр этого блока.

9. Выхлопной клапан цилиндра, соединенный с конденсацией.

10. Внешняя камера внутреннего сгорания смеси.

11. Пневматический плунжер подачи горючего в камеру.

12. Пробочный поршень камеры сгорания.

13. Коромысловый рычаге перекидным устройством, управляющий клапанами.

14. Отсечной клапан жидкости цилиндра.

15. Ресивер сжатого воздуха.

16. Конденсатор паров жидкости из выхлопных газов.

17. Сдвоенный корпус комплексной турбины.

18. Разделительный диск между полостями турбины.

19. Лопатки турбины, наклонные и с загнутыми концами.

20. Диск ротора комплексной турбины с лопатками от двух блоков.

Классификация двигателей внутреннего сгорания.

— Автомастер

Классификация двигателей внутреннего сгорания.

Подробности

Двигатели можно классифицировать по следующим признакам:

  1. по смесеобразованию и виду топлива:
    • с внутренним смесеобразованием (дизельный двигатель) приготовление смеси происходит непосредственно уже в самом цилиндре. Воспламенение горючего происходит от соприкосновения с нагретым до высокой температуры воздухом, за счет его сжатия поршнем. В качестве топлива используется дизтопливо.
    • с внешним смесеобразованием (бензиновые двигатели, также они могут работать и на газу). Смесеобразование происходит за пределами цилиндра. В цилиндр попадает уже готовая смесь, воспламенение которой происходит от искры свечи зажигания. В качестве топлива используется бензин или газ.
  2. по выполнению рабочего цикла существуют:
    • двухтактные. Рабочий цикл совершается за два такта. Такт – это процесс, происходящий в цилиндре за один ход поршня.
    • четырехтактные. Рабочий цикл совершается за четыре такта.
  3. по числу цилиндров различают:
    • одноцилиндровые.
    • двухцилиндровые.
    • многоцилиндровые
  4. по расположению цилиндров:
    • рядные (цилиндры расположены в ряд).
    • V – образные (цилиндры расположены под углом 90 градусов).
    • оппозитные (цилиндры расположены под углом 180 градусов).
  5. По способу охлаждения:
    • с воздушным охлаждением (обдувается встречным потоком воздуха или используются вентиляторы для принудительного обдува).
    • с водяным охлаждением (для охлаждения используется жидкость, которая циркулирует по каналам в головки блока цилиндров и не посредственно в самом блоке, отводя излишки тепла).

На современных автомобилях в наше время используются многоцилиндровые двигатели с водяным охлаждением со всеми видами расположения цилиндров. Используются как бензиновые, так и дизельные двигатели.

Уравновешивание двигателя

Возникающие во время работы двигателей инерционные силы вызывают дополнительные так называемые динамические усилия.

Чем быстроходнее двигатель, тем больше эти усилия, которые могут вызвать нежелательные колебания частей двигателя и фундамента.


Так как действие динамических усилий связано с наличием ускорений, то уничтожить эти усилия невозможно. Можно только путем рационального размещения движущихся масс частично, а иногда и полностью уравновесить действие динамических усилий.


Силы инерции неуравновешенных вращающихся масс (шейки мотыля, щек и 0,6 массы шатуна), т. е. центробежные силы, можно уравновесить с помощью противовесов, укрепляемых на щеках мотыля коленчатого вала. При этом вес противовесов подбирается так, чтобы создаваемая ими центробежная сила была равна центро­бежным силам неуравновешенных вращающихся масс.


Уравновешивание сил инерции возвратно-поступательно движу­щихся масс у одноцилиндрового двигателя не может быть достиг­нуто (исключение составляет двигатель со сходящимися поршнями). У многоцилиндровых же двигателей полное или частичное уравновешивание достигается путем соответствующего взаимного расположения мотылей коленчатого вала. Так, например, для полного уравновешивания сил инерции и их моментов для четырехтактных двигателей необходимо иметь шесть или восемь цилиндров с углами между мотылями соответственно 120 и 90°.


Число цилиндров двигателя определяет не только степень уравновешенности, но и степень неравномерности двигателя. У многоцилиндровых двигателей чередование рабочих ходов чаще, чем у одноцилиндрового, и поэтому степень неравномерности меньше. Следовательно, чем больше цилиндров имеет двигатель, тем меньше относительный вес и размеры может иметь маховик (при одинаковой мощности и степени неравномерности). Следует подчеркнуть, что у двухтактного двигателя вес маховика на единицу мощности меньше, чем у четырехтактного (при одинаковом числе рабочих цилиндров), так как за одно и то же время у него в 2 раза больше рабочих ходов. Многоцилиндровые двигатели более экономичны, чем одноцилиндро­вые; это объясняется тем, что расход мощности на некоторые вспо­могательные механизмы (регулятор, привод газораспределения, топливоподкачивающий насос и др.) мало зависит от числа цилиндров; следовательно, доля затраченной мощности на привод этих меха­низмов у одноцилиндровых двигателей больше, чем у многоцилиндро­вых. Преимуществом многоцилиндровых двигателей является их большая компактность.


Однако увеличение числа цилиндров усложняет конструкцию. Поэтому там, где требуются простые, маломощные, нетребователь­ные в обслуживании двигатели, применяются одно- и двухцилиндро­вые двигатели.


Говоря о колебаниях, появляющихся в рабочем двигателе, следует иметь в виду, что коленчатый вал представляет собой упру­гую систему, способную вызвать колебания под воздействием воз­никающих сил.


Пусть один конец длинного стального вала зажат в тисках, а на другом конце укреплен груз с плечом; сообщив грузу толчок, вал на некоторый угол будет скручен; однако затем вследствие упру­гих сил материала вала и инерции массы груза оба они придут в коле­бательное движение. Указанные крутильные колебания, возникаю­щие в момент прекращения действия внешних сил или момента, называются свободными или собственными коле­баниями. Вследствие внутреннего трения свободные колебания постепенно прекратятся; но если продолжать сообщать грузу внеш­ние толчки, то свободные колебания возбуждаются вновь и таким образом непрерывно возобновляются. Импульс сил, вызывающих свободные колебания, создают так называемые вынужденные колебания. Если импульсы сил будут действовать в такт свободным колебаниям, т. е. вынужденные колебания совпадут со свободными, то крутильные колебания не только, не прекратятся, но и резко усилятся, увеличивая свой размах.


В двигателе периодические изменения вращающихся моментов вызывают вынужденные крутильные колебания коленчатого вала, так как угол его закручивания не остается постоянным, а изменяется по времени. Совпадение частот и направлений свободных и вынужден­ных колебаний называется резонансом. При этом свободные и вынужденные колебания складываются, что вызывает в материале вала значительные напряжения, и могут вызвать поломку вала.


Число оборотов вала, при котором возникает явление резонанса, называется критическим. Оно сопровождается сильной вибрацией двигателя и стуками в соединениях подвижных частей, а иногда и поломкой вала.


Если число оборотов станет больше или меньше критического, то явления, сопровождающие резонанс, прекратятся, так как угло­вая скорость вращения отдельных мотылей постепенно выравни­вается. Следовательно, простейшим методом устранения резонанса является изменение числа оборотов двигателя. Критическое число оборотов может быть установлено расчетом или на основании обсле­дования установки с использованием специального прибора — торсиографа, при помощи которого можно получить график кру­тильных колебаний. При числе оборотов, близком к критическому, амплитуда колебаний резко увеличивается, что отображается на само­пишущем приборе.


Если критические обороты лежат близко к нормальным, то послед­ние следует снизить на 5—10% и не переходить за это число.

Для уменьшения амплитуды крутильных колебаний до величины, гарантирующей безопасность работы вала, применяется гаситель колебаний — демпфер. Принцип действия демпфера заключается в том, что присоединенная к валу например через муфту дополни­тельная масса, вращаясь вместе с валом, воспринимает часть энер­гии возмущающих сил, что способствует затуханию колебаний.

Три конфигурации современных моторов. Какие они?

Сто лет назад этот текст вылился бы в книгу: под капотом автомобилей бывали моторы и с современную газонокосилку, и звездообразные авиамонстры. Сейчас все устаканилось: пара-тройка литров объема, три конфигурации.

Всей стройности и традициям современного моторо­строения мы обязаны промышленной революции XIX века. А она, в свою очередь, была во многом спровоцирована появлением парового двигателя, практическое использование которого началось еще в XVII веке. Паровой монстр трансформировался в течение без малого трех столетий, но взрыв случился в середине XIX века: человечество додумалось до двигателя внутреннего сгорания (ДВС), и перед зарождающимся автомобилестроением открылись новые горизонты. Естественно, передовые технические умы того времени рьяно взялись за развитие свежей идеи.

Двигатели внутреннего сгорания могли быть востребованы везде: в текстильной промышленности, в сельском хозяйстве, в авиации и судоходстве, в добывающей промышленности, в наземном транспорте. Каждая из этих областей имела свою специфику и требования к двигателю, каждая диктовала свои условия. Так что двигатели порой принимали самые причудливые формы, но автомобильные конструкторы быстро определились со своими потребностями: к нача­лу XX века все лишнее было отсечено, и в разработку были приняты лишь три компоновочные схемы автомобильных моторов. Как это ни удивительно, но, несмотря на стремительный рывок технологий, эти три конструктивные схемы сохранились поныне: большинство легковых автомобилей, которые продаются в салонах и колесят по дорогам нашей страны, оснащены рядными бензиновыми двигателями, реже встречаются V-образные моторы и «оппозитники». Как так получилось, что из всего многообразия схем ДВС популярными стали именно эти?

Движение в такт

Возьмем классический четырех­тактный двигатель цикла Отто (по имени инженера Николауса Отто, впервые построившего такой мотор) с вертикально расположенным цилиндром. Главная задача — преобразовать тепло от сгорания топлива во вращательное движение механизма. Имеем цилиндр, поршень, впускной и выпускной клапаны, кривошипно-шатунный механизм и свечу зажигания. Внутри замкнутого цилиндра находится поршень.

  • 1-й такт. Впуск. Смещаясь вниз вдоль цилиндра (ход поршня) в разреженную пустоту цилиндра (рабочий объем), через открывающийся впускной клапан втягивается смесь воздуха с топливом.
  • 2-й такт. Сжатие. Поршень движется вверх, впускной и выпускной клапаны закрыты, смесь сжимается и нагревается.
  • 3-й такт. Рабочий ход. В момент, когда поршень достигает своей максимальной верхней точки и топливная смесь имеет оптимальное для воспламенения состояние, в камеру сгорания подается искра, возникающая между направленными в камеру электродами свечи, и смесь воспламеняется. Происходит взрыв — и последующее расширение газов давит на поршень, заставляя его вновь двигаться вниз.
  • 4-й такт. Выпуск. Достигнув нижней точки, поршень опять движется вверх, но открывшийся выпускной клапан высвобождает отработанные газы наружу.
    Возвратно-поступательное движение поршня преобразуется во вращательное благодаря кривошипно-шатунному механизму.

Все работает! Но предположим, возникла необходимость увеличить мощность. Наддув, изменяемые фазы газораспределения и инжекторный впрыск пришли на ум не сразу.

Делай больше

Самое очевидное решение — увеличить в размерах отдельные элементы двигателя. Например, размер цилиндра. Именно так и поступали первые конструкторы двигателей, но совершенно очевидной оказалась и возможность добавить в двигатель еще один цилиндр, а может, два, три и даже шестнадцать. Цилиндры логично устанавливались вертикально в ряд, шатуны поршней усаживались на удлиненный коленчатый вал. Вот вам и рядный ДВС.

Рядная «четверка» — главный мотор современности. Такой двигатель есть у любого крупного автопроизводителя

Конечно, таким образом значительно улучшались характеристики, но размеры и вес двигателя росли еще быстрее. Огромный двигатель неизбежно порождал проблемы компоновочного характера. Длинный и высокий рядный двигатель вынуждал автомобильных кузовщиков создавать гигантские капоты. К примеру, восьмицилиндровый рядный двигатель устанавливавшийся на люксовую модель 1930-х Renault Reinastella, скрывался под двухметровым капотом и занимал значительную габаритную длину и без того немалого автомобиля. Объем цилиндров в таких двигателях составлял шесть, семь, а то и девять литров. Невероятная длина коленчатого и распределительного валов вела к дополнительным торсионным нагрузкам. Попытки увеличения сечений валов неизбежно приводили к увеличению массы двигателя и проблемам c кинематикой. К тому же длинный мотор невозможно установить поперек капота, что удобно для набиравшей популярность переднеприводной схемы. Большие габариты мощных рядных многоцилиндровых двигателей служили причиной поиска компоновки цилиндров с более компактной геометрией в пространстве. Отличным решением оказался V-образный двигатель.

Поршни врозь

Цилиндры в этом моторе располагаются под углом в виде латинской буквы V. Шатуны поршней так же, как у рядников, расположены на одном коленчатом вале, но — ближе, что позволяет сократить общую длину двигателя почти вдвое и разместить мощный двигатель внутри небольшой мотоциклетной рамы или упрятать четырехцилиндровый агрегат в крошечном моторном отсеке ЗАЗ-965. Благодаря V-образной компоновке восьмицилиндровые двигатели мощностью 400 л.с. и более запросто поместились в двухдверные Chevrolet Camaro или Ford Mustang. Компактные размеры способствовали увеличению жесткости элементов корпуса двигателя, а расположение цилиндров под углом позволило уменьшить высоту двигателя. Однако широкие V-образные двигатели плотно занимают подкапотное пространство и более трудоемки в ремонте. Две головки блока, более сложная система газораспределения и выхлопа.

V-образная «шестерка» ныне самый распространенный двигатель этой схемы, в то время как V8 вымирают под давлением эконорм

Баланс сил

Вибрации в той или иной мере — неотъемлемый спутник любых поршневых двигателей, но в некоторых случаях V-образники более вибронагружены, чем их рядные собратья. И если многоцилиндровые (8, 12, 16) V-образные двигатели с широким углом развала (обычно 60° или 90°) менее склонны к вибрации, то более компактные, особенно так называемые рядно-V‑образные (Volkswagen впихнул в Golf мотор VR6 с углом развала цилиндров 15°, на Lancia Fulvia ставили V4 с углом 23°)  колотит прилично. Во многих ситуациях они вынуждают конструкторов добавлять противовесы и балансирные валы. Идеальной естественной уравновешенностью обладают только «шестерки» — рядные и оппозитные. Угадайте, почему за них до последнего держатся BMW и Porsche?

Боксеры без перчаток

«Оппозитник» — тот же V-образ­ник, но с углом развала 180°. Поршни двигаются в горизонтальной плоскости навстречу друг другу, поэтому, например, оппозитный B4 менее склонен к вибрациям, чем рядный R4. Но куда более важный плюс — малая высота, ведь появляется возможность расположить движок в нижней части моторного отсека и снизить центр тяжести, а значит, и повысить устойчивость автомобиля. Плоский двигатель можно разместить сзади даже под полом «бусика» (VW Transporter T1). Оппозитный двигатель стоял на самом массовом автомобиле всех времен Volkswagen Kafer (более 21 млн экз.) и на бюджетном Citroёn 2CV (3,8 млн экз.).

«Боксеры» ставились еще на довоенные мотоциклы BMW и до сих пор ставятся на тяжелые байки компании. Нам оппозитники хорошо знакомы по мотоциклам «Урал» и «Днепр». У «боксеров» отличная отдача, и за это их долгое время вовсю использовала Alfa Romeo, пока коммерческая необходимость унификации внутри концерна Fiat не привела к отказу от них в пользу более распространенных и оправданных рядных и V-образных двигателей. Тем не менее Porsche и Subaru вообще сделали оппозитные двигатели своей визитной карточкой, хотя есть у них и свои недостатки: сложная ремонтопригодность, повышенный расход масла и топлива.

Подписывайтесь на наш Telegram-канал, чтобы ничего не пропустить.

Рабочий цикл четырехтактного бензинового двигателя

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 – 0.75 МПа, а температура до 950 – 1200 о С.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600 о С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 – 0.095 МПа, а температура 40 – 60°С.

Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 – 9 МПа, а температура 1800 – 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ – происходит рабочий ход. Около НМТ давление снижается до 0.3 – 0.5 МПа, а температура до 700 – 900 о С.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 – 0.12 МПа, а температура до 500-700 о С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

В автомобилях применяются двигатели внутреннего сгорания (ДВС) названные так потому, что сгорание топлива происходит непосредственно в цилиндре. Основными деталями ДВС, кроме цилиндра, являются поршень, шатун, коленчатый вал. На кривошипе коленчатого вала подвижно закрепляется шатун. К верхней головке шатуна шарнирно, с помощью пальца, крепится поршень. Цилиндр сверху закрывается крышкой, которая называется головкой цилиндра. В головке имеется углубление, называемое камерой сгорания. Также в головке имеются впускное и выпускное отверстия, закрываемые клапанами. К коленчатому валу крепится маховик – массивный круглый диск.

При вращении коленвала происходит перемещение поршня внутри цилиндра. Крайнее верхнее положение поршня называется верхней мертвой точкой (В.М.Т.), крайнее нижнее положение – нижней мертвой точкой (Н.М.Т.). Расстояние, которое проходит поршень между мертвыми точками, называется ходом поршня. Пространство, находящееся над поршнем, когда он находится в н.м.т., называется рабочим объемом цилиндра. Когда поршень находится в в.м.т., над ним остается пространство, называемое объемом камеры сгорания. Сумма рабочего объема и объема камеры сгорания называются полным объемом цилиндра. В технических данных объем указывается в литрах или кубических сантиметрах. Объем многоцилиндрового двигателя равен сумме полных объемов всех его цилиндров. Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя. Она показывает, во сколько раз сжимается рабочая смесь в цилиндре.

Рабочий цикл двигателя Параметры КШМ

Один ход поршня от одной мертвой точке к другой называется тактом. Коленвал при этом совершает полоборота. Как работает ДВС? Во время первого такта происходит впуск горючей смеси в цилиндр. Клапан впускного отверстия открыт, выпускного – закрыт. Поршень, перемещаясь от в.м.т к н.м.т, подобно насосу, создает разряжение в цилиндре и топливо, перемешанное с воздухом, заполняет его.

Во время второго такта, при движении поршня от н.м.т. к в.м.т., происходит сжатие горючей смеси. При этом и выпускной, и впускной клапаны закрыты. В результате давление и температура в цилиндре повышаются. В конце такта сжатия, при приближении поршня к в.м.т., горючая смесь поджигается искрой от свечи зажигания (в бензиновых ДВС) или самовоспламеняется от сжатия (в дизельных ДВС).

Порядок работы цилиндров

Во время третьего такта происходит сгорание рабочей смеси. Клапана остаются закрытыми. Воспламенившаяся рабочая смесь резко повышает температуру и давление в цилиндре, которое заставляет поршень с усилием двигаться вниз. Поршень через шатун передает усилие на коленвал, создавая на нем крутящий момент. Таким образом, происходит преобразование энергии сгорания топлива в механическую энергию, которая двигает автомобиль. Поэтому этот такт называется рабочим ходом. Маховик, закрепленный на коленчатом валу, запасает энергию, обеспечивая вращение коленвала за счет сил инерции во время подготовительных тактов.

В ходе четвертого такта происходит выпуск отработанных газов и очистка цилиндра. Поршень, двигаясь от н.м.т. к в.м.т., выталкивает продукты горения через открытый выпускной клапан.

Далее весь процесс повторяется. Таким образом, рабочий цикл описанного ДВС происходит за четыре такта. Поэтому он и называется четырехтактным. Коленвал за это время совершает два оборота. Существуют и двухтактные двигатели, в которых рабочий цикл происходит за два такта. Однако такие ДВС в настоящее время на автомобилях практически не применяются.

Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал такты рабочего хода в разных цилиндрах должны происходить в определенной последовательности. Такая последовательность называется порядком работы двигателя. Он определяется расположением шеек коленчатого вала и кулачков распределительного вала. Например, в двигателях ВАЗ порядок работы 1-3-4-2. Так как в четырехтактном двигателе полный цикл в каждом цилиндре совершается за два оборота коленчатого вала, то, следовательно, в четырехцилиндровом двигателе для равномерной его работы за каждые пол-оборота коленчатого вала в одном из цилиндров должен происходить рабочий такт.

Рассмотренные детали составляют в совокупности кривошипно-шатунный механизм. Кроме него, для обеспечения работы ДВС нужны газораспределительный механизм, система охлаждения, система смазки, система питания и система зажигания (в бензиновых двигателях).

Газораспределительный механизм, управляя работой клапанов, обеспечивает своевременное их открытие и закрытие. Система охлаждения отводит тепло от деталей двигателя, нагревающихся при работе. Система смазки подает масло к трущимся поверхностям. Система питания служит для приготовления рабочей смеси и подачи ее в цилиндры. Система зажигания преобразует низковольтное напряжение от АКБ в высоковольтное и подает его на свечи для воспламенения рабочей смеси.

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Читайте в этой статье

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

, УКАЗЫВАЮЩИЙ НА ВЫСОКОСКОРОСТНОЙ МНОГОЦИЛИНДРОВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Индикатор, заявленный как единственное известное устройство для надежного и экономичного получения составных индикаторных диаграмм, отображающих влияние мощности, смещения и нижнего контура на высокоскоростные многоцилиндровые двигатели внутреннего сгорания, широкая область применения для таких инструмент, способствующий развитию высокоскоростных двигателей, позволяющий точно исследовать процессы в цилиндрах двигателя, которые давно стали очевидными, поскольку обычный индикатор выходит из строя при оборотах двигателя выше 300 об. вечера. из-за инерционного воздействия на его карандашный механизм и барабан. Из-за большой потребности в получении точных индикаторных карточек на высоких оборотах двигателя было решено сконструировать устройство, которое будет создавать диаграммы с небольшим или нулевым эффектом инерции для цилиндров двигателя, работающего на любой скорости, и эти диаграммы доступны для немедленного анализа, без использования фотографических или других процессов.

Вкратце, стандартный индикатор малой скорости с барабаном 1½ дюйма.в диаметре напрямую соединяется стандартным штуцером с той частью устройства, внутри которой находится небольшой тарельчатый клапан, который открывается на очень небольшой интервал каждого цикла двигателя и который при открытии завершает сообщение между коллектором двигатель и индикатор. Цилиндр индикатора заполнен густым смазочным маслом для обеспечения надлежащего уплотнения поршня индикатора и минимизации переноса газа в цилиндр двигателя или из него во время каждого цикла двигателя.

Движение барабана контролируется струной, намотанной на шкив и соединенной с крейцкопфом устройства, которое можно рассматривать как копию поршня двигателя, но которое перемещается только на один ход за каждые 800 ходов поршня двигателя и дает очень медленное возвратно-поступательное движение к барабану индикатора, тем самым сводя на нет эффекты инерции.Крейцкопф управляется регулируемым по длине шатуном и градуированным кривошипно-шатунным механизмом, образующим цепь, имеющую характеристики, точно такие же, как у цепи, управляющей поршнем двигателя. Поскольку длина шатуна может варьироваться, соотношение штока и его кривошипно-шатунного механизма может быть точно таким же, как соотношение между соответствующими частями двигателя. Направляющая крейцкопфа может быть отрегулирована для имитации смещения цилиндров, если такое смещение существует, и устройство можно сделать доступным для использования на всех типах двигателей внутреннего сгорания и для соотношений шатуна и кривошипа, варьирующихся от 3¾ до 1. и 5½ к 1.

Вал устройства, проходящий вертикально вверх от другого вала, приводимого в действие при частоте вращения двигателя, вращается при половине частоты вращения двигателя. Горизонтальный вал, на котором установлен ручной кривошип, приводится во включенное сцепление с частотой вращения коленчатого вала 1/40. Этот горизонтальный вал приводит в движение вертикальный вал, к которому через червячную передачу прикреплен градуированный кривошипно-шатунный диск с уменьшением от 20 до 1; Таким образом, при включенном сцеплении этот диск приводится в движение двигателем на 1/800 частоты вращения двигателя и приводит в действие шатун устройства.При выключенном сцеплении ступенчатый кривошипно-шатунный диск можно вращать рукояткой в ​​любом направлении.

Включены подробные сведения и иллюстрации конструкции, применения, процедуры и работы. Индикатор успешно работает более 500 часов. тестирования и исследовательской работы в Университете штата Огайо. Составная индикаторная диаграмма, полученная в течение большого числа циклов двигателя, которые по отдельности обычно не похожи, является явным преимуществом по сравнению с чем-либо еще опробованным, поскольку диаграмма строится на глазах инженера-испытателя.

, УКАЗЫВАЮЩИЙ НА ВЫСОКОСКОРОСТНОЙ МНОГОЦИЛИНДРОВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ на JSTOR

Индикатор, заявленный как единственное известное устройство для надежного и экономичного получения составных индикаторных диаграмм, отображающих влияние мощности, смещения и нижнего контура на высокоскоростных многоцилиндровых двигателях внутреннего сгорания, широкая область применения такого инструмента в содействии развитию высокоскоростных двигателей, позволяя точно исследовать процессы в цилиндрах двигателя, которые давно стали очевидными, поскольку обычный индикатор не работает при оборотах двигателя выше 300 об.вечера. из-за инерционного воздействия на его карандашный механизм и барабан. Из-за большой потребности в получении точных индикаторных карточек на высоких оборотах двигателя было решено сконструировать устройство, которое будет создавать диаграммы с небольшим или нулевым эффектом инерции для цилиндров двигателя, работающего на любой скорости, и эти диаграммы доступны для немедленного анализа, без использования фотографических или других процессов. Вкратце, стандартный индикатор медленной скорости, имеющий барабан диаметром 1½ дюйма, напрямую соединяется стандартным соединением с частью устройства, внутри которого находится небольшой тарельчатый клапан, который открывается на очень небольшой интервал каждого цикла двигатель и который при открытии завершает связь между коллектором двигателя и индикатором.Цилиндр индикатора заполнен густым смазочным маслом для обеспечения надлежащего уплотнения поршня индикатора и минимизации переноса газа в цилиндр двигателя или из него во время каждого цикла двигателя. Движение барабана контролируется струной, намотанной на шкив и соединенной с траверсой устройства, которую можно рассматривать как копию поршня двигателя, но которая перемещается только на один ход за каждые 800 ходов поршня двигателя и обеспечивает очень медленный обратный ход. движение вперед к индикаторному барабану, что исключает инерционные эффекты.Крейцкопф управляется регулируемым по длине шатуном и градуированным кривошипно-шатунным механизмом, образующим цепь, имеющую характеристики, точно такие же, как у цепи, управляющей поршнем двигателя. Поскольку длина шатуна может изменяться, соотношение штока и его кривошипного диска может быть точно таким же, как соотношение между соответствующими частями двигателя. Направляющая крейцкопфа может быть отрегулирована для имитации смещения цилиндров, если такое смещение существует, и устройство можно сделать доступным для использования на всех типах двигателей внутреннего сгорания и для соотношений шатуна и кривошипа, варьирующихся от 3¼ до 1. и 5½ к 1.Вал устройства, проходящий вертикально вверх от другого вала, приводимого в действие с частотой вращения двигателя, вращается с половиной частоты вращения двигателя. Горизонтальный вал, на котором установлен ручной кривошип, приводится во включенное сцепление с частотой вращения коленчатого вала 1/40. Этот горизонтальный вал приводит в движение вертикальный вал, к которому через червячную передачу прикреплен градуированный кривошипно-шатунный диск с уменьшением от 20 до 1; Таким образом, при включенном сцеплении этот диск приводится в движение двигателем на 1/800 частоты вращения двигателя и приводит в действие шатун устройства. При выключенном сцеплении ступенчатый кривошипно-шатунный диск можно вращать рукояткой в ​​любом направлении. Включены подробные сведения и иллюстрации конструкции, применения, процедуры и работы. Индикатор успешно работает более 500 часов. тестирования и исследовательской работы в Университете штата Огайо. Составная индикаторная диаграмма, полученная в течение большого числа циклов двигателя, которые по отдельности обычно не похожи, является явным преимуществом по сравнению с чем-либо еще опробованным, поскольку диаграмма строится на глазах инженера-испытателя.

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических специалистов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

Двигатель внутреннего сгорания для выработки электроэнергии — Введение

Двигатель внутреннего сгорания с искровым зажиганием во время такта сжатия

В дизельных двигателях топливо впрыскивается в цилиндр ближе к концу такта сжатия, когда воздух был сжат достаточно, чтобы достичь температура самовоспламенения.Сгорание топливовоздушной смеси вызывает ускоренное расширение газов под высоким давлением, которые толкают поршень к нижней части цилиндра во время рабочего хода, сообщая вращение коленчатому валу. Горение происходит периодически — только во время рабочего такта — тогда как в газовых турбинах горение происходит непрерывно. Когда поршень возвращается в верхнюю часть цилиндра во время такта выпуска, продукты сгорания (выхлопные газы) выталкиваются через выпускной клапан. К коленчатому валу подключено несколько цилиндров, ориентированных таким образом, что, в то время как одни поршни сообщают коленчатому валу вращение во время рабочего хода, другие поршни выталкиваются обратно в верхнюю часть цилиндров во время их тактов выпуска.

Размер и мощность двигателя внутреннего сгорания зависят от объема сожженного топлива и воздуха. Таким образом, размер цилиндра, количество цилиндров и частота вращения двигателя определяют количество мощности, генерируемой двигателем. Увеличивая приток воздуха к двигателю с помощью вентилятора или компрессора — так называемый наддув, — можно увеличить выходную мощность двигателя. Обычно используемый нагнетатель представляет собой турбонагнетатель, в котором в тракте выхлопных газов используется небольшая турбина для извлечения энергии для привода центробежного компрессора.

Гибкость топлива
Двигатели внутреннего сгорания могут работать на различных видах топлива, включая природный газ, легкое жидкое топливо, тяжелое жидкое топливо, биодизель, биотопливо и сырую нефть. Дизельные двигатели обычно более эффективны, чем двигатели SG, но также производят больше оксидов азота (NOx), диоксида серы (SO2) и твердых частиц (PM). Образование SO2 и ТЧ зависит от топлива, при этом выбросы природного газа низкие. Образование NOx связано с температурой горения.В двигателях SG предварительное смешивание воздуха с топливом для создания «обедненных» условий (большего количества воздуха, чем требуется для сгорания) снижает температуру сгорания и препятствует образованию NOx. Разработаны новые конструкции двигателей, позволяющие использовать преимущества дизельного процесса при сохранении преимуществ сжигания обедненной смеси. Двухтопливные двигатели (DF) спроектированы с возможностью сжигания как жидкого, так и газообразного топлива. При работе в газовом режиме газообразное топливо предварительно смешивается с воздухом, впрыскивается сразу после такта сжатия и воспламеняется пламенем запального топлива.В этом процессе пламя пилотного топлива действует как «свеча зажигания», воспламеняя обедненную газо-воздушную смесь. Двигатели DF сохраняют возможность использования резервного жидкого топлива при прерывании подачи газа. В газодизельных двигателях (GD) используется сильно сжатый газ, который впрыскивается после воспламенения жидкого пилотного топлива. Этот процесс позволяет использовать газ более низкого качества.

На электростанции многие SG или дизельные ДВС сгруппированы в блоки, называемые генераторными установками. Каждый двигатель связан с валом, который соединен с его электрическим генератором.Эти генераторные установки обеспечивают модульную электрическую мощность и бывают стандартных размеров от 4 до 20 МВт.

Двигатель внутреннего сгорания, объяснение

Современный двигатель внутреннего сгорания — это чудо техники, чудо механики, для использования которого не требуется много знаний о его работе. Если вы не автомобильный фанат, вы, вероятно, не так много думаете о двигателе своей машины.

Пока, конечно, под капотом не что-то пойдет не так.Когда дела идут плохо, проблемы и причины могут сбивать с толку многих водителей, для которых такие термины, как «поршень» и «картер» являются непонятной терминологией, а «боксер» напоминает Мухаммеда Али, а не Фердинанда Порше.

Итак, чтобы немного прояснить, что происходит под капотом, мы в Gear Patrol собрали воедино краткое руководство о том, как работает двигатель внутреннего сгорания, и краткое изложение различных типов двигателей внутреннего сгорания, доступных массовому потребителю. автомобили.

Полезные термины

Карбюратор: Устройство, которое смешивает воздух и топливо в правильном соотношении для сгорания.Система механическая, а не электронная, как современные двигатели с впрыском топлива или с прямым впрыском; как таковой, он менее эффективен.
Картер: Часть блока двигателя, в которой находится коленчатый вал. Обычно изготавливается из одного или двух кусков алюминия или чугуна.
Коленчатый вал: Компонент двигателя, соединенный с поршнями, который обеспечивает вращательное движение при сгорании.
Цилиндр: Часть блока двигателя, в которой находятся поршень и шатун, а также место, где происходит сгорание.
Прямой впрыск: Метод, при котором бензин нагнетается под давлением и впрыскивается в камеру сгорания цилиндра. В отличие от впрыска топлива, когда газ впрыскивается во впускной канал цилиндра.
Гармонический балансир: Также известный как демпфер, круглое устройство из резины и металла, прикрепленное к передней части коленчатого вала для поглощения вибрации и уменьшения износа коленчатого вала. Он уменьшает гармоники двигателя, возникающие при движении нескольких цилиндров по коленчатому валу.
Поршень: Компонент, расположенный внутри стенок цилиндра и закрепленный поршневыми кольцами.Он движется вверх и вниз во время четырехтактного процесса сгорания, создавая силу при взрыве топлива, а воздух перемещает его.
Ред. Соответствие: Технология в автомобилях с механической коробкой передач, в которой используются датчики педали сцепления, переключения передач и трансмиссии, отправляющие сигналы электронному блоку управления, которые сообщают ему автоматически увеличивать обороты двигателя, если обороты в минуту падают слишком низко. Согласование оборотов также происходит во время переключения на пониженную передачу, повышая обороты для соответствия более низкой передаче. Это снижает износ двигателя и упрощает процесс переключения передач.
Вибрация кручения: Вибрация, возникающая из-за вращающихся валов внутри автомобиля.

Двигатель внутреннего сгорания

Как только вы преодолеете защитную пластиковую крышку двигателя, которая есть на большинстве новых автомобилей, становится ясно сердце автомобиля: двигатель, окруженный радиатором, резервуарами для жидкости, воздушной камерой и аккумулятором. Независимо от того, насколько сложными могут быть двигатели — отчасти благодаря таким функциям, как прямой впрыск, согласование оборотов и т. Д. — в большинстве автомобилей используется так называемый четырехтактный цикл сгорания для преобразования топлива в кинетическую энергию.Короче говоря, ваш двигатель 1. втягивает воздух и топливо, 2. сжимает его, 3. воспламеняет его, толкая поршни вниз и создавая механическую силу, которая перемещает автомобиль, а 4. выталкивает. воздух, чтобы освободить место для следующего цикла цикла.

Хотя реальный процесс значительно сложнее, четыре этапа в основном можно суммировать следующим образом:

Ход впуска: Воздух и топливо втягиваются в цилиндр по мере того, как поршень движется вниз.
Ход сжатия: Воздух, подаваемый в двигатель, и топливо сжимаются, когда цилиндр перемещается в положение хода вверх.
Ход сгорания: Искра от свечи зажигания воспламеняет топливно-воздушную смесь, создавая давление. Расширяющаяся смесь толкает поршень вниз.
Выпускной ход: Образовавшаяся газовая смесь, образовавшаяся в результате воспламенения и расширения, выбрасывается из цилиндра как отходы.

Мощность двигателя сильно различается в зависимости от количества цилиндров, конфигурации двигателя и таких технологий, как турбонаддув и наддув.Лошадиная сила — это не только добавление цилиндров или рабочий объем; Фактически, многие из сегодняшних высокопроизводительных четырехцилиндровых двигателей могут легко соответствовать или превосходить мощность своих шестицилиндровых собратьев. В наши дни это еще и технологическая игра; Соедините бензиновый двигатель меньшего размера с электродвигателем, и вы получите рецепт дополнительного ускорения. (Показательный пример: BMW i8, который сочетает в себе 1,5-литровый рядный трехцилиндровый двигатель с турбонаддувом и электродвигатель общей мощностью 357 лошадиных сил и 420 фунт-фут крутящего момента.)

Типы двигателей

Современные двигатели внутреннего сгорания прошли долгий путь с 1876 года, когда уроженец Германии Николаус Отто построил первый четырехтактный двигатель внутреннего сгорания. Сегодня автомобильные инженеры регулярно творят чудеса, извлекая из конструкции максимальную мощность и эффективность. И хотя гибридные и электрические силовые агрегаты находятся на подъеме, на данный момент двигатели внутреннего сгорания — рядные / прямые, V-образные и оппозитные / плоские, работающие на бензине или дизельном топливе, владеют дорогой.

Рядные / прямые двигатели

Примеры рядных / прямолинейных двигателей
Рядные / прямолинейные двигатели: BMW i8
Рядные / прямые четверки: Honda Civic Si
Рядные / прямые шестерки: BMW X3 / X4 M

В «рядном» или «прямом» двигателе цилиндры расположены по прямой линии. Подавляющее большинство автомобилей с четырьмя цилиндрами на дорогах — это двигатели «рядные четыре», поэтому промышленность обычно называет их «четырехцилиндровыми». Рядные четырехцилиндровые двигатели, как правило, используются в автомобилях эконом-класса, поскольку они менее дороги в сборке и проще в обслуживании — цилиндры выстраиваются вдоль единого коленчатого вала, который приводит в движение поршни.

Рядный / рядный шестицилиндровый двигатель по своей сути сбалансирован из-за того, что отсутствуют вторичные гармоники, генерируемые парами поршней, движущихся под нечетными углами или на разных осях друг от друга, что приводит к гораздо меньшей вибрации, чем у рядных четырехцилиндровых двигателей. -цилиндровые двигатели.В настоящее время только BMW и Mercedes-Benz производят рядные / рядные шестицилиндровые двигатели для своих легковых автомобилей, и они имеют звездную репутацию благодаря плавности хода и сбалансированности.

V-образные двигатели

Примеры V-образных двигателей
V-4: Porsche 919 Hybrid Le Mans
V-6: Toyota 4Runner
V-8: Dodge Challenger
V- 10: Lamborghini Huracán
V-12: Ferrari 821 Superfast

«V-6» и «V-8» настолько встроены в американский словарь, что некоторые люди могут не знать, что двигатели бывают в каком-либо другом формате. V-образные двигатели обычно имеют два ряда цилиндров, установленных под углом 90 градусов друг к другу — отсюда V-образная форма — причем каждый ряд имеет половину общего числа цилиндров. В результате V-образные двигатели короче и занимают меньше места, чем прямые, что позволяет автопроизводителям уменьшить размер моторного отсека и увеличить зоны деформации и пространство для пассажиров. Кроме того, их легче установить ниже в автомобиле, что улучшит управляемость.

Если вы считаете себя фанатом автоспорта, вам нравятся двигатели V-типа из-за их частого использования в гоночных автомобилях.Жесткая конструкция и прочные материалы, используемые в двигателях V-типа, позволяют им выдерживать высокие нагрузки. Это также обеспечивает низкие силы крутильной вибрации, обеспечивая плавность подачи при переключении передач и высоких оборотах.

оппозитный / плоский двигатель

Примеры оппозитных / плоских двигателей
Flat-Four: Subaru WRX
Flat-Six: Porsche 911 Carrera

Термин «оппозитный» двигатель происходит от расположения поршней, которые лежать горизонтально друг к другу, как два боксера-соперника, которые касаются перчаток в начале боя. Поршни в оппозитном / плоском двигателе образуют два ряда — по одному с каждой стороны одного коленчатого вала.

оппозитный двигатель не только устрашает; он обеспечивает более низкий центр тяжести, чем рядные / прямые и V-образные двигатели, что улучшает управляемость. (Есть причина, по которой Porsche использует оппозитный двигатель в своих спортивных автомобилях 911, 718 Boxster и 718 Cayman). Однако оппозитные двигатели, как правило, более громоздкие и имеют более неудобную форму, что затрудняет их размещение в переднем моторном отсеке. . (Subaru — единственный производитель автомобилей, использующий в настоящее время оппозитный двигатель — однако, это удается довольно успешно.)

Дизельные двигатели

Примеры дизельных двигателей
Турбодизель V-6: Ram 1500 EcoDiesel
Турбодизель V-8: Ford F-250 Super Duty

Избавьтесь от старого представления о выбросе дыма хриплых 18-колесных автомобилей; современные дизельные двигатели, работающие на экологически чистом топливе, используемые в легковых автомобилях, намного менее грубы. Сгорание, которое происходит в дизельном двигателе, не требует искры; скорее, высокоэнергетическое дизельное топливо воспламеняется из-за сильного сжатия поршней: воздух сжимается, нагревая его до очень высоких температур; топливо впрыскивается, и смесь воспламеняется.

Хотя дизельные двигатели имеют разное количество цилиндров, они отличаются от своих газовых аналогов тем, что они используют сжатие, а не искру для воспламенения сжатой топливно-воздушной смеси. Но не только то, как происходит сгорание, отличает эти силовые установки: в силу того, что для сгорания требуется более высокое давление, дизельный двигатель должен быть построен как резервуар, чтобы противостоять неправильному обращению. В результате они, как правило, служат дольше стандартных двигателей внутреннего сгорания.Дизельные двигатели также более эффективны; они извлекают из своего топлива больше энергии, чем бензин.

И, наконец, у дизельных двигателей есть одно преимущество, которое нравится многим энтузиастам: больший крутящий момент на более низких оборотах двигателя, что заставляет их чувствовать себя более быстрыми вне очереди.

Подробнее Обзоры Gear Patrol

Горячие отзывы и подробные обзоры заслуживающих внимания, актуальных и интересных продуктов. Прочитать историю

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Каждый карбюратор питает цилиндр или группу цилиндров (например, раздельный двигатель) Патенты и заявки на патенты (класс 123/580)

Номер патента: 5699777

Abstract: Система подачи топлива для вертикального двигателя, снабженная множеством цилиндров, расположенных в вертикальном направлении, соответственно, в установленном состоянии двигателя и коленчатого вала, расположенного вертикально в нем, содержащая множество средств подачи топлива, расположенных для цилиндров, соответственно, указанное средство подачи топлива разделено на множество групп. Множество топливных насосов, каждый из которых расположен для каждой из указанных групп средств подачи топлива, причем указанные топливные насосы расположены под средством подачи топлива в самом нижнем положении соответствующей каждой группы средств подачи топлива. Кроме того, множество средств расширения топлива, оперативно соединяющих топливные насосы с каждой группой средств подачи топлива, соответственно, указанные средства распределения топлива соединены друг с другом посредством соединительных средств.

Тип:
Грант

Зарегистрирован:
30 сентября 1996 г.

Дата патента:
23 декабря 1997 г.

Цессионарий:
Suzuki Kabushiki Kaisha

Изобретателей:

Наоки Кавасаки, Мицухико Охта, Тошиаки Икея

Вот как работает двигатель вашего автомобиля

Для большинства людей автомобиль — это штука, заправленная бензином, которая перемещает их из точки А в точку Б. Но задумывались ли вы когда-нибудь: как на самом деле делает это с ? Что заставляет его двигаться? Если вы еще не выбрали электромобиль в качестве повседневного водителя, магия в том, как сводится к двигателю внутреннего сгорания — той штуке, которая шумит под капотом. Но как именно работает двигатель?

В частности, двигатель внутреннего сгорания является тепловым двигателем, поскольку он преобразует энергию тепла горящего бензина в механическую работу или крутящий момент. Этот крутящий момент применяется к колесам, чтобы заставить машину двигаться.И если вы не управляете старинным двухтактным Saab (который звучит как старая бензопила и изрыгает масляный дым из выхлопных газов), ваш двигатель работает на тех же основных принципах, независимо от того, управляете ли вы Ford или Ferrari.

Двигатели имеют поршни, которые перемещаются вверх и вниз внутри металлических трубок, называемых цилиндрами. Представьте, что вы едете на велосипеде: ваши ноги двигаются вверх и вниз, чтобы крутить педали. Поршни соединены стержнями (они похожи на ваши голени) с коленчатым валом, и они перемещаются вверх и вниз, чтобы вращать коленчатый вал двигателя, так же, как ваши ноги вращают велосипед, который, в свою очередь, приводит в действие ведущее колесо велосипеда или ведущие колеса автомобиля. .В зависимости от автомобиля в двигателе обычно от двух до 12 цилиндров, в каждом из которых поршень движется вверх и вниз.

Откуда сила двигателя

Эти поршни приводятся в движение вверх и вниз тысячи крошечных контролируемых взрывов, происходящих каждую минуту, создаваемых смешиванием топлива с кислородом и воспламенением смеси. Каждый раз, когда топливо воспламеняется, называется тактом сгорания или силовым ходом. Тепло и расширяющиеся газы от этого мини-взрыва толкают поршень в цилиндре.

Почти все современные двигатели внутреннего сгорания (для простоты мы сосредоточимся здесь на бензиновых силовых установках) относятся к четырехтактным. Помимо хода сгорания, который толкает поршень вниз из верхней части цилиндра, есть еще три хода: впуск, сжатие и выпуск.

Двигателям необходим воздух (а именно кислород) для сжигания топлива. Во время такта впуска клапаны открываются, позволяя поршню действовать как шприц, когда он движется вниз, втягивая окружающий воздух через систему впуска двигателя.Когда поршень достигает нижней точки своего хода, впускные клапаны закрываются, эффективно уплотняя цилиндр для такта сжатия, который имеет направление, противоположное такту впуска. Движение поршня вверх сжимает всасываемый заряд.

Четыре такта четырехтактного двигателя

Getty Images

В современных двигателях бензин впрыскивается непосредственно в цилиндры в верхней части такта сжатия.(Другие двигатели предварительно смешивают воздух и топливо во время такта впуска.) В любом случае, непосредственно перед тем, как поршень достигнет верхней точки своего хода, известной как верхняя мертвая точка, свечи зажигания воспламеняют смесь воздуха и топлива.

Возникающее в результате расширение горячих горящих газов толкает поршень в противоположном направлении (вниз) во время такта сгорания. Это ход, при котором колеса вашего автомобиля крутятся, как когда вы нажимаете на педали велосипеда. Когда такт сгорания достигает нижней мертвой точки, выпускные клапаны открываются, позволяя газам сгорания откачиваться из двигателя (как шприц, выталкивающий воздух), когда поршень снова поднимается.Когда выхлоп выходит — он проходит через выхлопную систему автомобиля перед выходом из задней части автомобиля — выхлопные клапаны закрываются в верхней мертвой точке, и весь процесс начинается заново.

Этот контент импортирован из {embed-name}. Вы можете найти то же содержимое в другом формате или найти дополнительную информацию на их веб-сайте.

В многоцилиндровом автомобильном двигателе циклы отдельных цилиндров смещены друг от друга и равномерно распределены, так что такты сгорания не происходят одновременно, а двигатель является максимально сбалансированным и плавным.

Getty Images

Но не все двигатели одинаковы. Они бывают разных форм и размеров. В большинстве автомобильных двигателей цилиндры расположены по прямой линии, например, рядный четырехцилиндровый двигатель, или объединены два ряда рядных цилиндров по схеме V-образного сечения, как в V-6 или V-8. Двигатели также классифицируются по размеру или рабочему объему, который представляет собой совокупный объем цилиндров двигателя.

Различные типы двигателей

Конечно, существуют исключения и незначительные различия среди двигателей внутреннего сгорания, представленных на рынке.Например, в двигателях с циклом Аткинсона изменение фаз газораспределения позволяет сделать двигатель более эффективным, но менее мощным. Турбонаддув и наддув, сгруппированные вместе под опциями принудительной индукции, нагнетают дополнительный воздух в двигатель, что увеличивает доступный кислород и, следовательно, количество топлива, которое можно сжечь, что приводит к увеличению мощности, когда вы этого хотите, и большей эффективности, когда вы надеваете мне не нужна сила. Все это дизельные двигатели делают без свечей зажигания. Но независимо от двигателя, если он относится к типу двигателей внутреннего сгорания, основы его работы остаются неизменными.И теперь вы их знаете.

Пора провести весеннюю уборку? Попробуйте продукты Meguiar, которые мы используем в нашем автопарке

Средство для мытья рук и воск Meguiar’s Ultimate

Ultimate Quik Детейлер Meguiar

Полотенце из микрофибры Meguiar’s Water Magnet

Детальщик интерьера Meguiar’s Ultimate

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Двигатели внутреннего сгорания с угольными поршнями без колец

Исследовательский центр Лэнгли, Хэмптон, Вирджиния

Двигатели внутреннего сгорания будут сконструированы с цилиндрами и поршнями без колец, изготовленными из легких углеродно-углеродных композитных материалов, в соответствии с предложением. Это предложение является логическим продолжением предыдущего исследования, которое показало, что двигатели, содержащие углеродные / углеродные поршни с обычными металлическими поршневыми кольцами, работающими в обычных металлических цилиндрах, работают лучше, чем двигатели с обычными поршнями из алюминиевого сплава.Наблюдаемое улучшение рабочих характеристик (измеряемое как увеличение срока службы поршня во время высокопроизводительной работы) можно объяснить, главным образом, низким тепловым расширением углерод-углеродного композита. Углеродно-углеродные поршни могут продолжать работать при тепловых нагрузках, которые вызывают заедание алюминиевых поршней или повреждение от задиров из-за чрезмерного теплового расширения и термической деформации.

Помимо чрезвычайно низкого коэффициента теплового расширения, углерод-углерод примерно на 30 процентов легче алюминия, что обеспечивает преимущество уменьшения массы возвратно-поступательного движения (меньшая масса возвратно-поступательного движения может потенциально снизить силы вибрации и увеличить число оборотов в минуту. возможность). Углерод-углеродный композит также имеет преимущество перед алюминием в том, что он полностью сохраняет прочность и жесткость при комнатной температуре при высоких температурах. Более того, прочность, тепловое расширение и теплопроводность композитов углерод-углерод можно регулировать путем ориентации углеродных волокон и выбора типа волокна, типа матрицы и методов обработки.

Ствол цилиндра, ламинированный углеродом / углеродом, в этом однопоршневом двигателе (или блок цилиндров, ламинированный углеродом / углеродом в многопоршневом двигателе) будет содержать поршень без кольца из углерода / углерода.

Кольца необходимы на алюминиевых поршнях для герметизации зазора, который должен существовать между поршнем и стенкой цилиндра, чтобы компенсировать дифференциальное тепловое расширение материала поршня и цилиндра (обычно чугунная втулка в алюминиевом блоке). Хотя холодный зазор можно несколько уменьшить, заменив поршень углеродистым углеродом, кольца все же будут необходимы для получения эффективного уплотнения. Преимущество потенциально достижимо в четырехтактном двигателе, потому что более плотная посадка поршня уменьшает так называемый «объем щели» или зазор между поршнем и стенкой цилиндра над верхним кольцом.Топливная смесь, попадающая в этот зазор, не сгорает и выбрасывается как несгоревший углеводород. Если бы металлический блок был снабжен углеродно-углеродной втулкой, холодный зазор можно было бы еще больше уменьшить, но достичь минимального зазора может быть трудно, поскольку на форму втулки могут влиять термически индуцированные деформации в окружающем металлическом блоке ( также существуют вопросы относительно того, как рукав может содержаться в блоке). Если, с другой стороны, металлический блок цилиндров и гильза должны быть заменены блоком цилиндров, полностью сделанным из углерод-углерод, разница теплового расширения между материалами поршня и цилиндра будет практически устранена, как и возможность теплового искажения. любого компонента.Тогда зазор может быть уменьшен до абсолютного минимума. Работа без колец, которая устранила бы источник трения, снижающего мощность, теперь может рассматриваться как интригующая возможность. В конечном итоге в четырехтактном двигателе могут потребоваться кольца для минимизации прорыва газов сгорания и / или регулирования расхода масла; однако объем щели, который является основной причиной выбросов углеводородов, может быть устранен во всем диапазоне рабочих температур двигателя, и характеристики кольца потенциально могут быть улучшены из-за меньшего раскачивания поршня в канале ствола.Работа без колец может оказаться особенно привлекательной для двухтактных двигателей с высокой частотой вращения / мин, где не требуются маслосъемные кольца и может быть допустимо относительно большее количество прорывов.

Для простоты на рисунке показан одноцилиндровый двухтактный двигатель внутреннего сгорания с воздушным охлаждением, который может быть построен в соответствии с этой концепцией (также возможны многоцилиндровые и четырехтактные двигатели). Ствол цилиндра будет сделан из углерод-углеродного композита, помещенного между металлической головкой с воздушным охлаждением и металлическим картером.Этот узел будет удерживаться вместе болтами с длинной головкой, которые будут проходить через головку и через (или рядом) цилиндр углеродного / углеродного цилиндра в резьбовые отверстия в картере. Цилиндр углеродного / углеродного цилиндра может быть герметично соединен с картером с помощью уплотнительного кольца, а с головкой — с помощью прокладки головки.

Блок цилиндров может быть изготовлен с одной или несколькими из многих возможных конфигураций волокон в углеродном / углеродном материале. Самая простая и наиболее экономичная конфигурация представляет собой набор слоев, в котором все волокна расположены перпендикулярно оси отверстия цилиндра.По своей сути низкая межслойная прочность углеродного / углеродного блока не будет серьезной проблемой, потому что сила зажима, прилагаемая болтами с головкой, будет сводить на нет растягивающие напряжения поперечного слоя в ламинате. В принципе, эта конфигурация, вероятно, может быть выбрана для сохранения зазора поршень / цилиндр с жесткими допусками, потому что она будет использовать две особенности углеродных волокон, которые очень привлекательны для этого применения: высокая продольная теплопроводность (для некоторых волокон выше, чем у меди ) и близкое к нулю продольное тепловое расширение.Такая конфигурация минимизирует тепловое расширение канала цилиндра, одновременно увеличивая теплопроводность наружу через цилиндр к окружающему воздуху. На практике также потребуются некоторые ориентированные по окружности волокна для обеспечения усиления против кольцевых напряжений, но доля таких волокон должна быть минимизирована.

Изготовление цилиндра цилиндра может начаться с укладки слоев в форму, которая может включать внутреннюю пресс-форму размером примерно с отверстие цилиндра.В качестве альтернативы, перед карбонизацией отверстие цилиндра может быть обработано несколько меньшего размера. В любом случае при первоначальном формировании отверстия внутренние края всех слоев будут подвергаться воздействию пропитывающих материалов, которые будут наноситься на этапах уплотнения. В конце концов, отверстие цилиндра будет обработано почти до конечного диаметра, а затем внутренняя поверхность цилиндра будет обработана в процессе уплотнения и нанесения покрытия, чтобы уменьшить трение и защитить от окисления. Затем цилиндр хонинговали до окончательного диаметра.

Эта работа была выполнена Филипом О. Рэнсоном из Исследовательского центра Лэнгли . Дополнительной документации нет.

Это изобретение принадлежит НАСА, и была подана заявка на патент. Запросы относительно неисключительной или исключительной лицензии на его коммерческую разработку следует направлять по адресу

Патентный советник,

Исследовательский центр Лэнгли;
(757) 864-3521.

См. LAR-15094.


NASA Tech Briefs Magazine

Эта статья впервые появилась в августовском номере журнала NASA Tech Briefs за август 2002 года.

Другие статьи из архивов читайте здесь.

ПОДПИСАТЬСЯ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *