Мотор роторный мазда: Mazda сделала прорыв в области роторных технологий — журнал За рулем

Содержание

Mazda сделала прорыв в области роторных технологий — журнал За рулем

У Мазды есть отличные новости, касающиеся роторных двигателей. Ротор вернется и будет крутить не только генератор, но и колеса.

Материалы по теме

Поклонники роторного двигателя Mazda зря расстраивались по поводу его исчезновения. Постоянно ужесточающиеся нормы выбросов, казалось бы, поставили крест на этой технологии, и некоторое время всем казалось, что роторный двигатель обречен на забвение. Но нет. Этот мотор вернется и будет использоваться не только для зарядки батарей автомобиля, но и сохранит связь с колесами.

Ранее мы писали, что Mazda сохранит роторный двигатель как часть гибридной силовой установки, отвечающей за зарядку батареи, но инженеры компании добились того, что выхлоп этого двигателя станет настолько чистым, что продавать его можно будет в любых странах, независимо от экологических требований.

Концепт Mazda RX-Vision

Концепт Mazda RX-Vision

Об этом в интервью австралийскому автомобильному изданию Drive заявил исполнительный директор Mazda Ичиро Хиросе. Он рассказал кое-что о разработках Mazda в области технологий роторных двигателей.

По словам Хиросе, то, что изначально планировалось как дополнительный источник энергии, стало основой для создания универсальной силовой установки. Он рассказал, что новая гибкая роторная гибридная силовая установка, находящаяся в стадии разработки, оказалась настолько эффективной, что ее можно продавать на любом рынке мира, даже на европейском, который славится своими строгими нормативами по выбросам.

Поршни роторно-поршневого двигателя Ванкеля

Поршни роторно-поршневого двигателя Ванкеля

Далее Хиросе описал установку. Она по своей сути схожа с установкой Toyota Prius, в которой двигатель внутреннего сгорания не только генерирует электричество, но и приводит в движение ведущие колеса. Эта технология, получившая название XEV, может появиться в серийных автомобилях Mazda в течение следующих нескольких лет.

Это, пожалуй, лучшая новость, касающаяся роторного двигателя, за последние годы. Следует отметить, что благодаря высоким оборотам роторный мотор лучше других подходит для зарядки аккумуляторов. Именно поэтому его изначально планировалось использовать при создании ё-мобиля, но там он служил бы лишь для зарядки конденсаторов. Mazda же сделает ему привод на колеса, благодаря чему роторный спорткар вернется, а вместе с ним появятся эффективные, чистые и мощные гибридные силовые установки, которые будут использоваться и на других моделях.

Фото: Mazda

Mazda возродит роторный двигатель в 2020 году. Не спешите радоваться

Японцы официально признались в том, что работают над роторным двигателем нового поколения. Но все не так просто.

После того, как от роторных двигателей отказался АВТОВАЗ, Mazda оставалась последним автопроизводителем в мире, работающим над развитием этой технологии. Впрочем, после прекращения производства купе RX-8 и из ее модельного ряда исчезли машины с роторными моторами.

Но в Mazda продолжали работать над роторным двигателем. В Сети всплывали многочисленные патенты, в интернете появлялись различные слухи, а после дебюта великолепного концепта Mazda RX-Vision сомнений в том, что вскоре у японцев вновь появится роторное купе, почти не осталось. Да, пусть оно будет мелкосерийным и очень дорогим! Не важно. Но реалии оказались куда более прозаичными, чем RX-Vision, и разочарующими для всех фанатов марки.

Mazda официально сообщила о том, что с 2020 года будет устанавливать в свои модели роторный двигатель нового поколения. Но… речь идет об электромобилях, где ДВС станет выполнять роль range extender на электромобилях. Но и этого японцам мало, роторный двигатель сможет питаться не бензином, а сжиженным газом, чтобы даже при его работе машина оставалась максимально экологичной. Например, у BMW i3 range extender представляет собой бензиновый двигатель малого объема. Такие моторы начинают работать, когда батареи практически полностью разряжены. Они не приводят машину в движение, а работают в качестве генератора, подзаряжая аккумуляторы.

Свой первый электромобиль Mazda намерена представить в 2020 году. Вероятнее всего, произойдет это перед Олимпиадой в Токио: все японские автопроизводители готовят новые экологичные и технологичные модели к этому событию.

Согласно утвержденной стратегии Sustainable Zoom-Zoom 2030, через десять лет Mazda полностью откажется от обычных двигателей внутреннего сгорания. Около 95% всех выпускаемых автомобилей будут гибридными с той или иной формой электрификации, еще 5% составят электромобили.

Фото: Mazda

Вот что о нем нужно знать

Что такое роторный двигатель Mazda, как он работает и зачем его возрождают

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Вращающиеся треугольники Рёло от Мазда возвращаются в массы, но явно под другим соусом…

 

Еще в марте Мартин тен Бринк, вице-президент «Mazda Motor Europe» по продажам и обслуживанию клиентов активировал энтузиастов по всему миру одним лишь своим заявлением, что роторный двигатель Ванкеля вернется в производство.

 

В частности, тен Бринк заявил, что роторный ДВС может стать элементом для расширения диапазона движения электрического автомобиля 2019 модельного года, но на тот момент это был просто слух. «Mazda не анонсировала никаких конкретных продуктов с роторным двигателем в то время. Однако Mazda по-прежнему привержена работе над технологиями роторных двигателей», –рассуждали на тему комментария вице-президента Мазда в Mazda Motor of America.

 

Смотрите также: Один из немногих мотоциклов с роторным двигателем: История

 

Итак, что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть по-другому?

 

Как он работает

Элементы системы двигателя

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Нажать для увеличения

 

Роторный двигатель внутреннего сгорания по форме напоминает бочку. На нем и в нем вы не найдете многих компонентов, к которым привыкли в стандартном поршневом моторе. Во-первых, в нем нет поршней, ходящих вверх и вниз. Вместо них полезную работу совершает необычной формы треугольный поршень с округлыми краями (треугольник Рёло). Их количество может варьироваться от одного до трех в одном двигателе, но чаще всего используется схема с двумя поршнями, вращающимися вокруг вала посредством эксцентриковой полой центральной части.  

 

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Топливо и воздух нагнетаются в пространство между сторонами роторов и внутренними стенками короба, где смесь воспламеняется. Быстрое, взрывное расширение газов поворачивает ротор, который таким образом производит мощность. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель более легким и компактным, чем поршневой двигатель эквивалентного объема.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

 

Мало кто знает, но роторный мотор был изначально придуман почти 100 лет назад, а не в 50-е годы XX века. Первоначально принцип работы мотора был проработан Феликсом Ванкелем, немецким инженером, который придумал свой принцип действия двигателя внутреннего сгорания.

 

Преимущество №1: Роторный двигатель легче и компактней обычного поршневого мотора

 

Война, поднявшая одних инженеров, например Фердинанда Порше, другим не дала никакой возможности развиться. Не нужны были в опасные времена мирные двигатели Ванкеля, поэтому изобретателю пришлось ждать аж до 1951 года, когда он получил приглашение от автопроизводителя NSU для разработки прототипа. Немецкая компания решила с помощью хитрости выяснить, так ли хорош оригинальный двигатель, параллельно дав возможность продемонстрировать силы другому инженеру – Ханнсу Дитеру Пашке.

 

Сложная конструкция Ванкеля фактически проиграла простому прототипу, разработанному инженером Ханнсом Дитером Пашке, который всего-навсего убрал из оригинальной конструкции все лишнее, сделав ее производство экономически выгодным.

 

Так в Германии был изобретен и опробован новый двигатель Mazda, который на протяжении долгих десятилетий был одним из немногих роторно-поршневых серийных моторов и единственным в 21-м веке.

 

Современный двигатель Ванкеля не совсем двигатель Ванкеля.

 

Да, основа роторного двигателя от Ванкеля стала самой успешной конструкцией данного двигателя в мире и единственной, которая смогла сложными путями дойти до серийного производства.

 

Еще в начале 60-х годов у NSU и Mazda проводился дружеский совместный конкурс на производство и продажу первого автомобиля с двигателем типа Ванкеля, когда они работали над сырым продуктом, пытаясь создать из него качественный товар.

 

NSU стал первым на рынке в 1964 году. Но немецкой компании не повезло: она разрушила свою репутацию в течение следующего десятилетия ненадлежащим качеством продукции. Частые отказы двигателя снова и снова посылали владельцев к дилеру и в магазин за запчастями. Вскоре нередко можно было обнаружить модели NSU Spider или Ro 80, в которых было поменяно три и более роторных двигателей Ванкеля.

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

 

Проблема заключалась в уплотнениях вершины ротора – тонких полосках металла между наконечниками вращающихся роторов и корпусами роторов. NSU сделал их из трех слоев, что вызывало неравномерный износ. Это была бомба замедленного действия не только для автомобилей фирмы, но и самого автопроизводителя. Мазда решила проблему уплотнения (крайне важного элемента мотора, без которого он просто не был способен работать из-за отсутствия давления), сделав их однослойными. Силовой агрегат начали устанавливать в 1967 году на спортивные люксовые модели Cosmo…

 

В начале 70-х годов Mazda представила целую линейку автомобилей с двигателем Ванкеля – мечта, которая была разбита нефтяным кризисом 1973 года. Пришлось поубавить аппетит и оставить мотор там, где в нем больше всего нуждались – в легком спортивном купе Mazda RX-7. С 1978 по 2002 год было выпущено более 800 тыс. этих легендарных спорткаров с необычным двигателем, у которого больше не было аналогов.

 

Из Германии в Японию, из Японии в СССР – вот путь двигателя, разработанного в 20-х годах XX века Ванкелем

 

Любим и ненавидим

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Фанаты техники любят роторные двигатели потому, что они другие. Многие автолюбители, хорошо разбиравшиеся в технике, питали определенную слабость к такому странному двигателю, работающему на обычном топливе, но при этом не выглядевшему как стандартный набор поршней, клапанов и других неотъемлемых элементов обычного поршневого мотора.

 

В зависимости от специфики мотора ротор линейно поставляет мощность до 7.000-8.000 об/мин – бесперебойно, практически на одном уровне крутящего момента. Эта ровная полка момента как раз и отличает его от подавляющего большинства поршневых ДВС, в которых наблюдается много мощности на высоких оборотах и ее нехватка при низких.

 

Автопроизводителям также понравился роторный двигатель благодаря плавности его работы. Роторы, вращаясь вокруг центральной оси, не создают никакой вибрации по сравнению с поршневыми двигателями, у которых верхняя и нижняя точки хождения поршня отчетливо прослеживаются даже внутри салона автомобиля.

 

Но необычный двигатель – это словно необъезженная лошадь, своенравное животное, поэтому в противовес обожателям идеи Ванкеля концепция также внушает свою долю ненависти в среде автомобильных фанатов и механиков. И, казалось бы, почему?

 

Ведь у двигателя простой дизайн: отсутствует ремень ГРМ, отсутствует распределительный вал, нет привычной системы клапанов. Но за простоту приходится платить большой точностью производства деталей. Они должны быть сделаны безукоризненно, что поднимает их стоимость в разы, по сравнению с запчастями для обычных поршневых двигателей. Второе – этих запчастей мало в природе. И в-третьих, в мире почти нет специалистов, которые занимались бы починкой роторных моторов. В Москве, говорят, есть пара, но очередь к ним – на год вперед.

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

 

Из минусов еще можно назвать своеобразную работу роторного силового агрегата. Конструкция подразумевает сгорание масла в цилиндрах мотора, куда нагнетаются небольшие количества моторного масла прямо в камеры сгорания. Делается это для того, чтобы смазывать прилегающие площади роторов, вращающихся на бешеной скорости. Сизоватый дым, иногда выходящий из выхлопной трубы, – это признак беды, он отпугивает незнающих людей от моделей вроде RX-7 или 8.

 

Роторные моторы также предпочитают минеральные масла синтетическим, а их дизайн означает, что вы должны время от времени подливать масло в этот ненасытный агрегат, чтобы оно не закончилось.

 

Ну и наконец, те уплотнения вершины ротора, которые не удалось сделать NSU, все же недостаточно долговечны. Раз в 130-160 тыс. км мотору требуется капитальная переборка. А это удовольствие, как вы уже понимаете, дорогое. Да и что такое 130.000 км? Пять-шесть лет эксплуатации? Маловато будет!

 

Современные водители также наиболее чувствительны к другим недостаткам роторных движков: высоким выбросам вредных веществ в атмосферу (этим, скорей, обеспокоены в Greenpeace) и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед отправкой ее восвояси (здесь, конечно, удар наносится по карману автовладельца). Да, роторные двигатели имеют отменный «аппетит».

 

Для RX-8 Mazda частично решила эти проблемы, разместив выпускные отверстия по бокам камер сгорания. Но сейчас борьба за экологию обострилась и предложенных улучшений оказалось недостаточно. Это явилось еще одной причиной, по которой RX-8 стал последним автомобилем с двигателем Ванкеля под капотом. Он продавался 10 лет, с 2002 по 2012 год, но его убила экология.

 

Время для повторного возвращения

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

Вернемся к слухам Mazda о том, что компания может использовать какой-то роторный двигатель в качестве «расширителя» диапазона для своего будущего электрического автомобиля. Эта штука имела бы смысл.

 

Еще в 2012 году Mazda арендовала в Японии 100 электромобилей Demio EV, они были хороши, но напрягал небольшой диапазон без подзарядки – менее 200 км.

 

Изучив дело, в 2013 году Mazda создала прототип, который получил небольшой роторный моторчик, тот самый «расширитель» диапазона, который почти удвоил этот диапазон. Модель назвали «Mazda2 RE Range Extender».

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

 

Колеса прототипа приводились в движение с помощью электрического двигателя, а 0,33-литровый 38-сильный роторный моторчик работал для того, чтобы перезаряжать батареи электрического двигателя, если они разряжались и поблизости не было места для перезарядки.

 

Поскольку роторный двигатель не мог отправлять мощность на колеса, Mazda2 RE не был гибридом, как Volt или Prius. Силовой агрегат Ванкеля, скорее, был бортовым генератором, который добавлял энергии аккумуляторам.

 

Смотрите также: Mazda официально подтвердила возвращение роторных двигателей в 2019 году

 

Такая же компактность и легкий вес, которые сделали ротор Ванкеля отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в новом качестве – расширяющего диапазон генератора на автомобиле, особенно том, который уже имеет электродвигатели и батареи, конкурирующие за пространство, и не может позволить себе много «лишнего» веса.

Роторный двигатель Mazda возвращается: Вот что о нем нужно знать

 

Роторные двигатели Мазда сделали себе репутацию в основном как моторы для спортивного автомобиля. В былые времена слухи об уникальных возможностях такого рода силовых агрегатов преодолели даже железный занавес СССР, где уже наши инженеры вносили и успешно интегрировали диковинные моторы в отечественные автомобили.

 

Наверное, будет не совсем правильно делать из такого легендарного двигателя всего лишь генератор для электромобиля. Но такова сегодняшняя реальность: время роторных моторов прошло, и его не получится вернуть обратно.

Роторные двигатели фирмы Mazda – на примере RX-8 (часть 1)


Данные конструкции двигателей просуществовали вплоть до 2002 года (до начала выпуска Mazda RX8). В 2003 году был начат выпуск автомобиля Mazda RX8, на который устанавливается третье поколение роторных двигателей, отличительной чертой которого стало расположение впускных и выпускных окон на боковых корпусах двигателя. Толчком к этому послужила необходимость поиска компромисса между топливной экономичность и высоким показателем мощности автомобиля, чего на двигателях предыдущих поколений достигнуть не представлялось невозможным.


Надо отметить, что расположение, геометрия и размер впускных и выпускных окон являются определяющими факторами, влияющими на характеристики роторного двигателя. Фирма Mazda за более чем сорокалетний опыт разработки роторных двигателей добилась достаточно большого прогресса в этой области (на рисунках «Сравнение боковых корпусов двигателей» и «Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda» приведено сравнение впускных и выпускных окон двигателей третьего поколения с окнами двигателей предыдущих поколений).

Сравнение боковых корпусов двигателей

Сравнение боковых корпусов двигателей.















Годы выпуска

67-72

80-84

80-84

85-88

85-88

82-84

83-85

90-95

91-02

03 -

03 -

Модель

CS*5

RX7

RX7

Cosmo

RX7

Richie

RX7

RX7

Cosmo

RX7

Cosmo

RX7

RX8

RX8

Двигатель

10A-NA

12A-NA

12A-NA

13B-T/C

13B-NA

12A-T/C

13B-NA

13B-T/C

13B-T/C

13B-NA High

13B-NA Std.

Впуск. окна

4

4

6

4

6

4

6

4

4

6

4




Впуск

Первичное

окно

Открытие*1

25

32

58

45

32

58

45

58

45

3

3

Закрытие *2

45

50

25

50

40

40

30

50

50

65

60

Вторичное

окно

Открытие*1

25

32

45

32

32

32

32

32

32

12

12

Закрытие*2

45

50

25

50

30

40

30

50

50

36

45

Дополни-

тельное окно

Открытие*1

-

-

58

-

45

-

45

-

-

38

-

Закрытие*2

-

-

70

-

80

-

70

-

-

80

-

Выпуск

Открытие*3

75

75

75

75

75

75

71

75

75

50

40

Закрытие*1

48

48,5

38

48,5

48,5

48,5

48,5

48

48

3*4

3*4


Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda. Примечание: *1 — после ВМТ, *2 — после НМТ, *3 — до НМТ, *4 — до ВМТ, *5 — Cosmopolitan Sport.


Для автомобиля Mazda RX8 фирмой Mazda был разработан новый двухроторный двигатель, получивший название 13B- MSP. Данный двигатель был выпущен в двух модификациях: STANDARD POWER — двухроторный двигатель, развивающий мощность 141 кВт/192 л.с. при частоте вращения 7000 об/мин и HIGH POWER — двухроторный двигатель, развивающий мощность 170 кВт/231 л.с. при частоте вращения 8200 об/мин. Двигатели получили название «RENESIS», что подразумевает возрождение роторного двигателя вообще, а так же зарождение нового поколения роторных двигателей в частности. Данный двигатель кардинально отличается от всех разработанных ранее большим количеством технических решений, касающихся как конструкции самого двигателя, так и установленных на него систем. Двигатель вобрал в себя все лучшие разработки, сделанные ранее в этой области, что в совокупности с современными разработками и использованием современных, более прочных и износостойких материалов, позволило придать двигателю хорошие характеристики, такие как соответствие экологическому стандарту EURO 4, большой ресурс, экономичность и высокий крутящий момент в большом диапазоне частот вращения эксцентрикового вала. Роторный двигатель также отличают относительная простота конструкции: в нем имеются только две вращающиеся детали (эксцентриковый вал и ротор), отсутствуют неуравновешенные массы (это позволяет сделать двигатель очень быстроходным без опасности возникновения резонанса) и малые габариты по сравнению с аналогичными по мощности поршневыми двигателями.


По показателю уравновешенности, данный двигатель можно сравнить только с рядным шестицилиндровым двигателем или V-образным восьмицилиндровым, на поршневых двигателях других типов достижение таких показателей плавности хода не возможно. В данном двигателе неуравновешена центробежная сила от вращающихся масс. Для уравновешивания центробежной силы на оба конца эксцентрикового вала установлены противовесы. На автомобилях с МКПП масса заднего противовеса равномерно распределена по периметру маховика.


Основными элементами данного двигателя являются боковые и промежуточный корпуса, два ротора, два статора, эксцентриковый вал, две неподвижные шестерни и система уплотнений рабочих камер.


Неподвижные шестерни изготовлены из специальной стали и подвергаются ионному азотированию для предотвращения разрушения зубьев от сил инерции ротора (от его разгона и торможения) и газовых импульсов, в месте соприкосновения неподвижной шестерни и шестерни внутреннего зацепления ротора. Неподвижные шестерни запрессовываются в боковые корпуса двигателя.

Неподвижные шестерни


Неподвижные шестерни. 1 — неподвижные шестерни (модели STANDARD POWER), 2 — коренной подшипник, 3 — передняя неподвижная шестерня, 4 — задняя неподвижная шестерня, 5 — фиксирующий выступ, 6 – крышка упорного подшипника, 7 — упорный подшипник, 8 — упорная пластина, 9 — фиксирующий винт (модели HIGH POWER).


В неподвижную шестерню запрессованы коренные подшипники. Коренные подшипники фиксируются от поворота выступом (модели STANDARD POWER) или фиксирующим винтом (модели HIGH POWER).


Эксцентриковый вал изготовлен из высокопрочной углеродистой стали с применением индукционного упрочнения для повышения износостойкости. Эксцентриковый вал неразъемный, с двумя коренными и двумя роторными шейками. Крепление эксцентрикового вала осуществляется с помощью подшипников скольжения в неподвижных шестернях, которые установлены в боковых корпусах. Подшипники скольжения являются неразъемными.

Эксцентриковый вал


Эксцентриковый вал. 1 — температура моторного масла 60°С или выше, 2 — редукционный клапан эксцентрикового вала, 3 — эксцентриковый вал, 4 — ротор, 5 — масляная форсунка, 6 — моторное масло, 7 — температура моторного масла ниже 60°, 8 — слив масла (снижение давления).


В эксцентриковом валу выполнены каналы для смазки коренных и роторных шеек, а также подачи масла внутрь роторов для их охлаждения, для чего в эксцентриковый вал встроены масляные форсунки. Для облегчения прогрева двигателя при холодном запуске, в эксцентриковый вал встроен редукционный масляный клапан. Когда двигатель не прогрет, редукционный клапан открывается и давление моторного масла снижается, так как часть масла сливается из вала, в результате чего давление становится недостаточным для впрыскивания масла во внутреннюю полость ротора. Когда двигатель прогревается, редукционный клапан закрывается и масло начинает поступать во внутреннюю полость ротора для его охлаждения. От осевого перемещения эксцентриковый вал фиксируется упорным подшипником и упорной шайбой, находящимися в передней неподвижной шестерне.


Боковые и промежуточный корпуса двигателя отлиты из специального чугуна с применением азотирования, это позволило повысить износостойкость рабочих поверхностей.


Основной конструктивной особенностью, отличающей двигатели «RENESIS» от предыдущих поколений роторных двигателей, устанавливаемых на автомобили Mazda, стало так называемое боковое расположение впускных и выпускных окон.


Здесь надо отметить, что ранее все роторные двигатели фирмы Mazda устанавливаемые на серийные автомобили (около десяти моделей двигателей) имели боковое расположение впускных окон, а выпускные окна располагались на статорах. Данная конструкция оптимальна для быстроходных роторных двигателей и обеспечивает достаточно большой крутящий момент на низких частотах вращения эксцентрикового вала и высокую мощность, но не обеспечивает плавность протекания процесса сгорания из-за большого времени перекрытия окон, что ведет к снижению мощности. Расположение впускных и выпускных окон в боковых корпусах позволило сделать по нескольку не только впускных, но и выпускных окон на каждый ротор. Такое расположение окон способствует улучшению пусковых качеств двигателя, уменьшению перекрытия окон, что способствует возникновению эффекта резонансного наддува и предотвращается попадание отработавших газов во впускные окна, также была достигнута стабилизация процесса сгорания. Каждое впускное и выпускное окно имеет индивидуальный размер. Благодаря применению нескольких впускных и выпускных окон специально подобранного размера удалось достигнуть лучшего наполнения рабочей камеры свежим зарядом, улучшить очистку от отработавших газов, снизить время перекрытия окон, что позволило увеличить КПД двигателя, мощность и снизить расход топлива. Количество впускных окон на корпусах зависит от модификации двигателя.


На двигателях «RENESIS» впускные окна расположены в наиболее выгодных местах и их размер увеличен на 30% по сравнению с предыдущими двигателями. Увеличение впускных окон позволило достигнуть более раннего открытия окон и более позднего закрытия без увеличения перекрытия окон (когда впускное и выпускное окно остаются открытыми одновременно), как следствие, в камеру сгорания стало поступать больше рабочей смеси (см. рисунок «Сравнение роторных двигателей с разным расположением выпускных окон»).


Боковые и промежуточный корпуса центрируются с помощью полых штифтов. Вес боковых корпусов уменьшен за счет специальных проточек. В боковых корпусах имеются отверстия для установки неподвижных шестерен, через которые роторы приводятся в движение. На переднем корпусе установлен масляный насос и маслоприемник, на промежуточном корпусе имеются проточки для установки основных форсунок, а на задний корпус устанавливаются масляный фильтр и регулятор давления моторного масла.


Статоры изготовлены из алюминия, во внутреннюю поверхность статоров вставлены стальные пластины по технологии SIP (Sheet metal insert process — технология вставки листового металла). Внутренняя поверхность стальных вставок (эпитрохоидная поверхность) хромирована по технологии Micro Channel Porous — покрытие поверхности металлом с образованием микро пор для лучшей приработки и смазки поверхности. Для улучшения приработки эпитрохоидная поверхность покрыта фтороуглеродистым полимером.



Корпуса и статоры двигателя


Корпуса и статоры двигателя.

1 — установочная поверхность не- подвижной шестерни,

2 — установочная поверхность масляного насоса,

3 — установочная поверхность маслоприемника,

4 — передний корпус двигателя,

5 — уплотнение,

6 — статор переднего ротора,

7 — полый штифт,

8 — выпускное окно,

9 — впускное окно,

10 — промежуточный корпус,

11 — направляющая масляного щупа,

12 — маслозаливная горловина,

13 — статор заднего ротора,

14 — впускное окно системы APV

(модели HIGH POWER),

15 — установочная поверхность масляного фильтра,

16 — задний корпус двигателя,

17 — установочная поверхность регулятора давления масла,

18 — установочная поверхность основных форсунок,

19 — порт системы подачи воздуха на выпуск,

20 — вставка,

21 — поперечный разрез заднего корпуса.


Роторы (и шестерни внутреннего зацепления на роторах) изготавливают из чугуна, для предотвращения поломки зубьев неподвижной шестерни. Роторы изготавливаются пустотелыми с проточками под своеобразные камеры сгорания, также для уменьшения веса роторов была уменьшена толщина внутренних ребер. На торцах ротора имеются выточки под уплотнительные штифты и торцевые уплотнительные пластины. Во внутреннюю поверхность ротора запрессовывается роторный подшипник.

Ротор и система уплотнений рабочих камер1


Ротор и система уплотнений рабочих камер. 1 — расширитель торцевой уплотнительной пластины, 2 – торцевая уплотнительная пластина, 3, 16 — ротор, 4 — цветная метка, 5 — уплотнительный штифт, 6 — пробка, 7 – пружинная шайба, 8 — боковой элемент радиального уплотнения, 9 — радиальная уплотнительная пластина, 10 — расширители радиальной уплотнительной пластины, 11 — компрессионное кольцо, 12 — расширитель компрессионного кольца, 13 — уплотнительные кольца, 14 — пружина маслосъемного кольца, 15 — маслосъемное кольцо, 17 — пружинная вставка, 18 — роторный подшипник, 19 — выточки, 20 — выточка для камеры сгорания, 21 – направление вращения ротора, 22 — роторная шестерня внутреннего зацепления.


Ротор имеет форму треугольника с дугообразными сторонами. При вращении ротор совершает сложное планетарное движение. Ротор вращается вместе с эксцентриковым валом и одновременно, из-за обтекания неподвижной шестерни, закрепленной на боковом корпусе двигателя, посредством шестерни внутреннего зацепления, вращается вокруг своей оси. Отношение числа зубьев шестерни внутреннего зацепления ротора и неподвижной шестерни — 3:2 (51:34) При вращении ротора три его вершины постоянно касаются поверхности статора, образуя рабочие камеры, объем которых постоянно изменяется. За один оборот объем каждой рабочей камеры ротора меняется 4 раза от минимального до максимального, что обеспечивает возможность протекания четырехтактного цикла в каждой из трех рабочих камер за один оборот ротора или за три оборота эксцентрикового вала (так как ротор вращается в три раза медленнее эксцентрикового вала). В соседних камерах совершаются аналогичные циклы со сдвигом на 120°.


Таким образом, за один оборот ротора совершается три рабочих хода или один рабочий ход на каждый оборот эксцентрикового вала. Здесь нужно заметить, что в роторном, как и в поршневом двигателе, на тактах впуска и рабочего хода объем между вершинами ротора увеличивается, а на тактах сжатия и выпуска объем уменьшается. Открытие и закрытие впускных и выпускных окон осуществляется боковой поверхностью ротора.



Четыре цикла работы роторного и поршневого двигателя
Четыре цикла работы роторного и поршневого двигателя



Протекание рабочего хода в роторном и поршневом двигателе
Протекание рабочего хода в роторном и поршневом двигателе. Давление газов действует на боковую поверхность ротора/головку поршня с силой Pg. Эта сила раскладывается на нормальную составляющую Pb и тангенцианальную Pt. Тангенцианальная сила Pt и обеспечивает вращение ротора или шатуна.


Такая конструкция позволила достигнуть существенного уменьшения времени перекрытия окон.



Сравнение роторных двигателей с разным расположением выпускных окон


Сравнение роторных двигателей

с разным расположением выпускных окон.

1 — открытие впускного окна роторных

двигателей предыдущих поколений,

2 — открытие выпускного окна роторных

двигателей предыдущего поколения ,

3 — открытие выпускного окна,

4 — выпускное окно.


Можно провести сравнение между роторным и поршневым двигателями по объему и производимой мощности. Возьмем для примера рядный четырехцилиндровый двигатель объемом 2 литра (2000 см3). В данном поршневом двигателе рабочий объем 2000 см3 достигается за два оборота коленчатого вала, значит, за один оборот достигается рабочий объем 1000 см3. В роторном же двигателе за один оборот эксцентрикового вала достигается рабочий объем 1308 см3 (654 см3x2, объем двух камер сгорания двух роторов). Следовательно, можно сказать, что роторный двигатель «RENESIS» сопоставим по мощности и уравновешенности с шестицилинровым рядным двигателем объемом 2,6 литра. Охлаждение ротора осуществляется с помощью моторного масла, циркулирующего в эксцентриковом валу и впрыскиваемого во внутреннюю полость ротора через форсунки. На внутренней поверхности ротора сделано оребрение для лучшего отвода тепла. Во внутренней поверхности ротора масло совершает вихревое движение между ребрами ротора, охлаждая его.


Система уплотнений рабочих камер представляет собой совокупность прокладок, уплотнительных пластин и уплотнительных штифтов и создана для обеспечения герметичности рабочих камер, находящихся между торцами ротора. В данном роторном двигателе система уплотнений состоит из радиальных уплотнительных пластин, торцевых уплотнительных пластин, уплотнительных штифтов и расширителей. Для предотвращения попадания масла, охлаждающего и смазывающего ротор, из внутренней полости ротора в камеры сгорания и образования нагара, установлены маслосъемные кольца. Маслосъемные кольца имеют разные диаметры, маслосъемное кольцо состоит из трех деталей: уплотнительного кольца, стального кольца (с хромированной поверхностью) и пружины. Также для предотвращения попадания отработавших газов на впуск, когда ротор находится в верхней мертвой точке, установлено одно компрессионное кольцо с расширителем.


Радиальные уплотнительные пластины изготавливаются из специального чугуна с применением электронно-лучевой обработки для повышения износостойкости. Элементами радиального уплотнения являются радиальная уплотнительная пластина, два расширителя и боковые элементы радиального уплотнения. Под действием расширителей и центробежных сил инерции радиальная уплотнительная пластина прижимается к эпитрохоидной поверхности статора, тем самым, способствуя герметизации рабочих камер.


Торцевые уплотнительные пластины изготовлены из металлокерамики и прижимаются к поверхности бокового корпуса расширителями и под давлением газов, попадающих под пластины. Торцевое уплотнение состоит из дугообразных пластин и расширителей, располагающихся на каждой из боковых поверхностей роторов. Элементы торцевого уплотнения используются для уплотнения торцевого зазора между ротором и боковым корпусом. Форма торцевой уплотнительной пластины так же оптимизирована для удаления углеродистых отложений из канавки торцевого уплотнения на роторе.


Уплотнительные штифты изготовлены из специального чугуна, внешняя сторона уплотнительного штифта хромирована для уменьшения износа. К боковому корпусу уплотнительные штифты прижимаются пружинными шайбами. Уплотнительные штифты различаются по диаметрам, в зависимости от диаметра отверстия под штифт (на ротор нанесена идентификационная метка). В штифтах имеются прорези, в которые вставляются радиальные уплотнительные пластины, а торцевые уплотнительные пластины плотно прилегают к уплотнительным штифтам, тем самым достигается замкнутость системы уплотнений.


Все детали системы уплотнения неподвижны относительно ротора, что дает конструкции следующие преимущества: отсутствие износа деталей от перемещения, износ верхней части уплотнений не вызывает нарушения герметичности системы, расширители и пружины системы работают в статических условиях, что препятствует их усталостному разрушению.


Система охлаждения


В данных двигателях используется жидкостная система охлаждения закрытого типа с принудительной циркуляцией охлаждающей жидкости. Привод насоса охлаждающей жидкости осуществляется ремнём привода навесных агрегатов. Термостат с перепускным клапаном расположен во впускном патрубке охлаждающей жидкости и призван поддерживать оптимальную температуру в системе охлаждения, пуская охлаждающую жидкость по малому или большому (через радиатор) кругу охлаждения.


Система смазки


В двигателе используется система смазки с полнопоточной очисткой масла и с подачей масла под давлением к основным движущимся деталям (подшипникам скольжения, деталям системы уплотнений, роторам и т.д.).


Масляный насос трохоидного типа. Внутри него расположены два ведущих и два ведомых ротора с внутренним зацеплением, которые вращаются в одном направлении. Привод осуществляется цепью от эксцентрикового вала.


Сравнение роторных двигателей с разным расположением выпускных окон
1 — уплотнительная канавка,

2 — маслоуспокоитель,

3 — датчик низкого уровня

моторного масла.


Масляный фильтр расположен на заднем корпусе. Для уменьшения температуры масла в систему смазки могут быть установлены один или два маслоохладителя.


Для уменьшения высоты двигателя, разработан специальный плоский стальной масляный поддон (высота масляного поддона 40 мм). В масляном поддоне установлен маслоуспокоитель и датчик низкого уровня моторного масла. Для уменьшения веса маслоприемник сделан из пластика.


Двигатель работает на смеси бензина с моторным маслом, так как необходима смазка деталей системы уплотнений рабочих камер. Доля подаваемого в рабочие камеры и участвующего в образовании рабочей смеси масла (по сравнению с количеством подаваемого топлива) невелика. Для регулирования количества подаваемого в рабочие камеры масла разработан дозирующий масляный насос.



Дозирующий масляный насос
Дозирующий масляный насос. 1 — дозирующий масляный насос, 2 — слив масла, 3 — шаговый двигатель, 4 — подача масла, 5 — поверхность прилегающая к двигателю, 6 — разрез насоса, 7 — датчик-выключатель, 8 — плунжер, 9 — дифференциальный плунжер, 10 — вспомогательный плунжер, 11 — регулятор, 12 — червячный механизм, 13 — блок управления двигателем, 14 — обмотка №1, 15 — обмотка №2, 16 — обмотка №3, 17 — обмотка №4, 18 — неиспользуемый вывод.


Масляный насос
Масляный насос. 1 — поперечный разрез, 2 — подача масла, 3 — слив масла, 4 — разделитель, 5 — корпус масляного насоса, 6 — вал масляного насоса, 7 — передний ведомый ротор, 8 — передний ведущий ротор, 9 — разделитель, 10 — задний ведущий ротор, 11 — задний ведомый ротор.


Дозирующий масляный насос управляется блоком управления двигателем с помощью сигналов. Блок управления регулирует количество подаваемого дозирующим масляным насосом масла в зависимости от частоты вращения эксцентрикового вала, показаний датчика температуры ОЖ и датчика массового расхода воздуха. Подача масла в рабочие камеры осуществляется масляными форсунками.

Масляный насос


Масляные форсунки. 1 — масляные форсунки, 2 — боковой и промежуточный корпус, 3 — статор,

4 — распылитель форсунки, 5 — подача масла, 6 — обратный клапан, 7 — к воздушному шлангу.


На каждом статоре установлено по две масляные форсунки. Для улучшения смазки корпусов и уплотнений, масляные форсунки установлены под наклоном и впрыскивают масло на боковые корпуса ротора. Чтобы разрежение в двигателе не препятствовало подаче масла к масляным форсункам, на каждую форсунку установлен шланг, связанный с атмосферой. Для предотвращения попадания масла в воздушный шланг, когда во внутренней полости двигателя создается давление, в форсунку установлен обратный клапан.


Масляный насос
1 — шаговый двигатель, 2 — датчик- выключатель,
3 — шаг 52, 4 — выключено, 5 — включено.


Механизм, регулирующий количество подаваемого масла, состоит из плунжера и дифференциального плунжера, приводимого червячным механизмом. Червячный механизм приводится от эксцентрикового вала через ведущую шестерню привода дозирующего масляного насоса, находящуюся на передней крышке двигателя. Количество подаваемого масла регулируется по сигналу от блока управления двигателем, изменением хода плунжера и поворотом регулятора, связанного с шаговым двигателем. Положение шагового двигателя отслеживается с помощью датчика-выключателя, показания которого, наравне с параметрами, описанными выше, используются блоком управления двигателем для расчета необходимого количества подаваемого масла. Когда шаговый двигатель находится на шаге 52 или большем, по сигналу от датчика-выключателя в блоке управления двигателем включается алгоритм регулирования подачи масла, проходящего через дозирующий масляный насос. Когда шаговый двигатель находится ниже шага 52, устанавливается максимальная подача масла.


Алгоритм управления дозирующим масляным насосом включает несколько функций (см. таблицу «Функции управления дозирующим масляным насосом»).


Таблица. Функции управления дозирующим масляным насосом.









Состояние

Описание


Замок зажигания в положении «ON», двигатель выключен (сберегающий режим)


При выключенном двигателе управление дозирующим масляным насосом прекращается для сохранения заряда аккумуляторной батареи


Функция возврата к начальным параметрам


При начале управления дозирующим масляным насосом блок управления распознает, на каком шаге находится шаговый двигатель, и происходит возврат к начальному параметру (нулевому шагу)

Функция расчета количества подаваемого масла при работе двигателя


Управление шаговым двигателем в зависимости от режима работы двигателя



Функция установки начального шага (при повороте замка зажигания в положение «OFF»)


При установке замка зажигания в положение «OFF» управление дозирующим масляным насосом прекращается и блок управления принимает шаг, на котором находится шаговый двигатель, как начальный (нулевой)


Функция контроля положения шагового двигателя


Блок управления двигателем контролирует соответствие шага, на котором находится шаговый двигатель, с необходимым шагом


Работа в режиме Fail-safe (при какой-либо неисправности)


Если в системе управления дозирующим масляным насосом или в самом насосе выявлена неисправность, блок управления двигателем регулирует подачу топлива, угол опережения зажигания, управляет шаговым двигателем, тем самым регулируя мощность двигателя, для предотвращения его повреждения



Пример работы системы управления дозирующим масляным насосом


Пример работы системы управления дозирующим масляным насосом.

1 — частота вращения эксцентрикового вала, 2 — шаговый двигатель,

3 — датчик-выключатель, 4 — около 500 об/мин, 5 — выше шага 52,

6 — шаг 0 (начальный), 7 — функция возврата к начальным параметрам,

8 — функция контроля положения шагового двигателя,

9 — функция расчета количества подаваемого масла при работе двигателя.


Бушин Сергей


© 1999 – 2010 Легион-Автодата

Обсуждение на нашем форуме: http://forum.autodata.ru/205/14813/

Разбираем двигатель Mazda RX-8: сколько стоит роторное удовольствие? — Автоблоги

После повышения таможенных пошлин в 2011 году любителям мощных заднеприводных автомобилей все труднее: старый автопарк изнашивается, а привезти в РБ что-то с большим мотором неприлично дорого. Тем не менее белорусам все еще доступна подержанная Mazda RX-8 с роторно-поршневым двигателем объемом всего 1,3 л и мощностью от 192 до 231 л.с. Стоит ли связываться с этим мотором, пытался выяснить Юрий Гладчук вместе со специалистами СТО.

У нас в ногах лежит компактный роторный мотор Mazda RX-8. Менее чем через час он будет полностью разобран, в процессе специалисты расскажут обо всех нюансах его эксплуатации и ремонта. Но перед этим — краткий ликбез о двигателе Ванкеля.

История техники

Немецкий изобретатель Феликс Ванкель в 20-х гг. XX века стремился упростить конструкцию двигателя, избавив его от большого количества деталей. Ему это удалось — в РПД отсутствуют кривошипно-шатунный механизм, поршни, клапаны и сложная система их привода. Роль цилиндра выполняет статор, имеющий форму эпитрохоиды (похоже на раздувшуюся в середине цифру 8). В роли поршня выступает трехгранный ротор. Вершинами он скользит по поверхности статора, образуя три замкнутые полости. В каждой из трех полостей за один оборот происходит 4 такта: впуск, сжатие, рабочий ход и выпуск — все как обычно.

Ротор движется по сложной траектории, которую обеспечивают две шестерни. Одна из них, внутренняя, неподвижно закреплена на роторе и «обкатывает» неподвижную шестерню, закрепленную на боковой стенке статора. Сам ротор вращается на валу с эксцентриком. С этого вала и снимается крутящий момент двигателя. Впрочем, чтобы понять, как это работает, достаточно изучить данное видео.
В идеале все выглядит здорово: минимум деталей, максимум простоты и отдачи. По габаритам роторный мотор существенно меньше поршневых двигателей и занимает не так много места. При этом РПД способен выдерживать высокие обороты, вибронагруженность меньше. Из-за меньшего числа деталей двигатель имеет малую инертность, а значит в ответ на газ раскручивается моментально!

Но, как это часто бывает, недостатки роторного двигателя проистекают из его же достоинств. Неидеальная форма камеры сгорания — причина неэкономичности и высокого содержания вредных веществ в выхлопных газах. Расход топлива выше, чем у классических моторов. Кроме того, большая площадь камеры сгорания приводит к большей теплонагруженности мотора. Главным врагом любого роторного двигателя является износ апексов — уплотнителей между камерами сгорания. Этой очень маленькой пластине приходится принимать на себя огромные перепады температур и давления при небольшом пятне контакта с поверхностью камеры сгорания. Чтобы обеспечить нормальную смазку уплотнений, во впускной коллектор приходится дополнительно впрыскивать масло. А это повышенный расход масла и ухудшение экологических параметров. И прочее, прочее, прочее — о недостатках этого мотора можно говорить часами. Конструкция на первый взгляд вроде бы и проста, но нюансов здесь не счесть.
 
Многие автопроизводители в свое время отказались от разработок РПД, хотя патент на производство двигателя купили: Daimler-Benz, General Motors, Alfa Romeo, Nissan, Toyota. Серьезно роторами некоторое время занимался ВАЗ. А еще был такой автомобиль как NSU Ro 80, с 1967 года выпускавшийся несколько лет с роторным двигателем объемом 995 куб.см  мощностью 113 л.с. Но в итоге только Mazda продолжила работы над совершенствованием конструкции Ванкеля, добившись весьма неплохих результатов. И сегодня мы на станции, специализирующуюся на ремонте двигателей Mazda RX-7 и RX-8.
 
Разборка

 

Перед нами мотор 13В. Его мощность — 192 л.с, пробег — около 180.000 км. Капитальный ремонт производился на 120.000 км. Владелец автомобиля приехал с жалобами на плохой запуск горячего двигателя и высокое потребление масла на угар. Самое время поговорить о ресурсе и стоимости ремонта.

 — В США, Японии и странах Европы эти моторы проезжают без вмешательства около 200 тысяч километров, — рассказывает мастер специализированной СТО Вячеслав. — Но у нас ресурс мотора в среднем составляет 100 тысяч. Бывает и меньше, так как частенько они не получают должного обслуживания и качественного топлива. Первым признаком приближающегося капитального ремонта является повышенный расход масла, плохой запуск «на горячую» и низкий уровень компрессии. Перед покупкой такого автомобиля обязательно нужно пользоваться специальным компрессометром — компрессия не должна быть ниже 6,5 атмосфер. Стоимость работы по переборке двигателя — около 1000 долларов, ремкомплект — около 1500. Это при условии, что ни одна из секций, никакие крупные детали не пострадали. Если внутри большой износ, задиры или повреждения, то рекомендуется замена секции, стоимость которой составляет около 700 долларов. Если за мотором ухаживать, все делать своевременно, двигатель может проехать и 150 тысяч. Все очень прогнозируемо: достаточно через одну замену масла замерять компрессию — она должна составлять 6,5-8 атмосфер. Падает она постепенно, но ниже 6-6,5 атмосфер лучше не доводить, иначе одним ремкомплектом не обойдешься.
 
Бывают ситуации, когда стоимость ремонта может быть нецелесообразной. По словам Вячеслава, в таком случае из Америки можно заказать двигатель, который проходил капитальный ремонт в заводских условиях, при этом все основные детали в нем заменены на новые. От нового двигателя такой можно и не отличить. Его стоимость — около $4500. Из Японии можно заказать новый по цене около $6000-6500. Можно рассматривать и вариант б/у.
 
— Ресурс сильно зависит от того, как часто меняются «расходники» и какого они качества. Своим клиентам мы рекомендуем менять масло раз в 5 тысяч километров. Для разных рынков установлены разные интервалы: в Европе, например, они составляют 20 тысяч. Воздушный фильтр обязательно следует менять раз в 20 тысяч километров. В бак заливать только 95-й бензин, но лучше всего подходит 98-й, хотя это, конечно, дорого. Ведь топливо RX-8 потребляет нещадно: в городе 15 литров, а то и больше. Хотя я считаю, что расход вполне адекватен мощности двигателя.

Приступаем к разборке. Мастер обращает внимание на масляные форсунки. В РПД нет прямого контакта секций с поддоном, поэтому здесь масло принудительно подается в секции на такте впуска.

— Если их вовремя не поменять, это может плохо закончиться. Запомните: расход масла у роторного двигателя должен быть. Какой? Канистра оригинального масла вмещает 5 литров, заливаем 3,5 — полутора литров хватает на 5 тысяч километров. Это если все исправно. Если есть нюансы, расход может быть больше. Если расход меньше, это должно вызвать обеспокоенность — значит, проблема с форсунками. По статистике выхаживают они почти 50 тысяч километров.

В Mazda RX-8 установлен масляный радиатор, в зависимости от версии их может быть два или один. Нашему взору открывается масляный термостат. Масло не сразу попадает в радиаторы, а только лишь по достижении определенной температуры.

По словам Вячеслава, как и любой мотор, роторный 13В боится перегрева, но он случается нечасто — общая система охлаждения имеет объем 9,5 л, радиатор охлаждения немаленький.

Откручиваем поддон — взору предстает хитрая система противоотливов. На RX-8 можно смело участвовать в любительских трек-днях.

 

Масляный насос, по словам Вячеслава, очень производительный, есть два редукционных клапана сброса избыточного давления масла.

Снимаем крышку масляного насоса. Вячеслав говорит, что единственная цепь (привод масляного насоса) в этом моторе практически вечная, проблем с ней никогда не было.

Углубляемся. Двигатель крепится 19 болтами, которые зажимаются в определенной последовательности. У каждого болта есть сальник для предотвращения утечки антифриза. Откручиваем их.

А вот и сам ротор. В данном видеосюжете Вячеслав наглядно рассказывает о принципе работы РПД.

Специалист обращает внимание, что роль компрессионных колец здесь выполняют апексы.

— Проблема маленького ресурса заключаются в том, что уплотнения необходимо обеспечивать по трем плоскостям. А это сложно, поэтому изначально компрессия в РПД более низкая, отсюда много проблем. В старом RX-7 все получше. Турбированный роторный мотор этого автомобиля проходит больше 200 тысяч при условии грамотного обслуживания. У Mazda RX-8 высота апекса составляет 5,3 миллиметра, на 4,5 миллиметра рекомендуется замена, следовательно, на «жизнь» отводят 0,8 миллиметра. У RX-7 высота апекса составляет 8,1 миллиметра, стереться он может на 1,6 миллиметра. Поэтому ресурс занизили искусственно, мне кажется — чтобы попасть в экологические рамки и повысить оборотистость двигателя.

— Комплект из четырех специальных свечей стоит 100 долларов. Обычные использовать нельзя — можно сразу уничтожить двигатель. Менять их нужно раз в 30-40 тысяч километров. Главное не перепутать маркировку — свечи разные.

Спустя менее часа работы в спокойном темпе двигатель был полностью разобран. Проверка состояния деталей в двух секциях показала, что в первой сместился вкладыш ротора. В обеих секциях признаки повышенного расхода масла — выпускные окна наполовину закоксованы. Внутренние стенки секции имеют задиры.

Вячеслав утверждает, что капитальный ремонт двигателя нецелесообразен:
 
— Общий износ мотора высок, съехал вкладыш ротора, крупные узлы требуют замены. Если восстанавливать, то за такие деньги можно купить два подержанных мотора или один «ребилдинговый». Здесь нужно менять вал, вкладыши, прокладки, апексы, секции. То есть цена качественного восстановления такого мотора — около 4000 долларов. Но это еще не страшно. Бывает, апекс выпадает и наносит серьезные разрушения другим деталям. К слову, мотор может заводиться и ехать на одной секции. В этом плане, конечно, двигатель терпит страшные издевательства.

 Есть ли смысл?

Вячеслав, помимо того что ремонтирует эти машины, сам на них ездит. Что он думает о них? Стоит ли покупать?
 
— У меня в семье есть и Mazda RX-7, и RX-8. На самом деле в этих автомобилях очень много хорошего. Ездить приятно: мотор эластичный, легко раскручивается до 9000 оборотов в минуту в зависимости от модификации. Управляемость великолепная, дизайн очень интересный. Нужно лишь вовремя менять «расходники», следить за состоянием форсунок и компрессией. Кроме двигателя, здесь все предельно надежно — с электрикой и ходовой частью нюансов в автомобиле нет. Выбор имеется — в стране появляется все больше Mazda RX-8. Можно смело покупать. Но стоит помнить, что такие машины недешево обслуживать, на последние деньги они не покупаются, хотя как раз купить не так дорого: за 15.000-16.000 долларов можно подобрать хороший экземпляр. Если все работает, роторная Mazda — сплошной позитив.

Mazda RX-8 — проблемы и неисправности

С дебютом нового поколения двигателей Ванкеля Mazda принялась за создание автомобиля с отличными ходовыми качествами и отменной управляемостью. Результатом работы дизайнеров стал стилистический коктейль из овалов и кривых, смешанных друг с другом в идеальных пропорциях. К этому добавилось идеальное распределение веса по осям (ровно по 50 процентов) и рулевое управление с великолепной обратной связью.

Здесь все нацелено на получение удовольствия от вождения. Настройки подвески оптимальные — не слишком жесткие, но и не мягкие. Однако следует быть осторожным при преодолении лежачих полицейских. Дорожный просвет невелик.

Помимо роторного двигателя Mazda RX-8 отличается от конкурентов необычной системой дверей. Кузов лишен центральной стойки и оснащен второй парой небольших дверей, открывающихся назад против направления движения, что облегчает посадку на задний диван.

В теории салон RX-8 рассчитан на 4-х человек. Но сзади поместятся только дети.

Автомобиль стал рекордно популярным и просуществовал на конвейере 9 лет. Всего было произведено более 100 000 экземпляров. Он был вычеркнут из модельного ряда, потому что не соответствовал нормам выбросов Евро-5 (в основном из-за большого расхода масла на угар).

Важно отметить, что, несмотря на мнение большинства механиков об RX-8 как экспериментальном автомобиле, спортивная Mazda может похвастаться типичной японской долговечностью. Однако необходимо осознавать тот факт, что в случае чрезмерно «энергичной» эксплуатации двигатель может потребовать серьезного ремонта, так и не доехав до 100 000 км. Капитальный ремонт при этом будет стоить более 2 000 долларов.

Мазду RX-8 можно приобрести по цене от 5 000 долларов. Желательно избегать многочисленных лимитированных версий, которые отличаются высоким уровнем мощности. Ремонт таких модификаций может обойтись гораздо дороже, чем обычных серийных экземпляров.

Интерьер собран из высококачественных материалов, а все детали подогнаны идеально.

Двигатель Ванкеля

Роторный двигатель не имеет клапанов и ГРМ. Треугольный поршень вращается внутри овального корпуса на эксцентриковом валу. Смесь бензина и воздуха попадает через отверстие в верхней левой части корпуса (на фото). Затем она сжимается, воспламеняется и покидает камеру через отверстие в нижнем левом углу.

Типичные проблемы и неисправности

Неисправности встречаются крайне редко, но вы должны знать, что Mazda RX-8 страдает рядом назойливых заболеваний. Наиболее серьезное из них касалось в основном копий первых лет производства — до 2006 года. Это затруднения с запуском двигателя из-за перелива топлива. Один из факторов, способствующих недугу – слабый стартер. Крайне важно, после запуска дать поработать мотору хотя бы 10 минут. Если заглушить двигатель прежде, чем он достигнет рабочей температуры, то, скорей всего, мотор уже больше не запустится. В таком случае  необходимо выкрутить свечи (придется снять колесо и подкрылок), вынуть предохранитель топливного насоса и крутить стартером так долго, пока в камере сгорания не исчезнет весь «топливный туман». Отдельные владельцы используют другой не менее эффективный запуск роторного двигателя – «с толкача». Но он смертельно опасен для катализатора. В последствии Мазда провела работу над ошибками, в том числе предложила другие свечи зажигания и модифицировала программное обеспечение ЭБУ двигателя.

Поршневые уплотнения — слабое место двигателей Renesis (с двумя камерами).

Еще одна распространенная жалоба – мотор RX-8 очень любит кушать масло. Причем, порой приходится доливать целый литр уже после 2 000 км пробега. А масло для нормальной работы силового агрегата требуется только очень высокого качества, которое, как известно, не дешево.

Механики советуют строго соблюдать интервал замены масла и менять его не реже одного раза в 10 000 км. Кроме того, они категорически запрещают использование масел на синтетической основе. Это вызывает образование нагара, который забивает уплотнения ротора и  масляные каналы. Лучше использовать специальное масло Mazda или альтернативную «минералку» хорошего качества.

Порой встречается и разгерметизация камер сгорания. Основные симптомы — падение мощности и проблемы с запуском. Некоторые владельцы считают, что регистрационный знак установлен в неудачном месте. Он перекрывает часть воздухозаборника, что ухудшает охлаждение двигателя и ускоряет его износ.

Трансмиссия

Следует остерегаться копий с автоматической коробкой передач. Производитель даже был вынужден для версий с АКПП сократить мощность двигателя с 232 до 192 л.с. Автомат не выдерживал нагрузок от мотора, максимальная мощность которого достигалась при 9000 об/мин. Помимо АКПП, в зависимости от года выпуска и рынка назначения, устанавливалась 5-ти или 6-ступенчатая механическая коробка передач. Последняя предназначалась для самых мощных модификаций.

В быту?

Четырех дверное купе вполне можно рассматривать в качестве автомобиля для повседневного использования. Проблема только в расходе топлива. Среднее значение составляет 11 л/100 км. Но это при спокойной манере движения. Однако чаще всего владельцы водят автомобиль активно — на спортивный манер. В таком режиме расход топлива редко опускается ниже 15 литров. Азарта добавляет отличная управляемость и очень точное рулевое управление.

Микробагажник не слишком удобен в обиходе и вмещает всего 290 литров. В конце концов, это спортивный автомобиль.

Помните, что большинство деталей (в том числе элементы кузова) не имеют заменителей. Торговцы поэтому часто предлагают детали со вторичного рынка, а при ремонте кузова используется преимущественно шпатлевка. Немного лучше ситуация с заменителями расходников, необходимых для ТО. Нет проблем с доступностью фильтров, тормозных колодок, передних тормозных дисков, ступичных подшипников, некоторых элементов подвески и рулевого управления. В случае с другими деталями владельцы обречены на оригиналы под заказ.

Последний экземпляр Mazda RX-8 вышел со сборочного конвейера в 2012 году. Одновременно с RX-8 закончилась целая эпоха серийных роторных двигателей Ванкеля, которая продлилась 45 лет.

Технические характеристики Mazda RX-8










Версия1,3 х 2
Двигательбензин
Рабочий объем2 х 1308 см3
Количество цилиндров/клапанов2 ротора / нет
Максимальная мощность232 л.с.
Макс. крутящий момент210 Нм
Максимальная скорость235 км/ч
Разгон 0-100 км/ч6.4 с
Средний расход, л/100 км15.8

 

Mazda может вернуть в серию роторный мотор уже в ближайшие годы

A CENTURY OF DEFYING CONVENTION: MAZDA 1920-2020
Mazda RX-7: Redefining rotary-powered driving fun
Leverkusen, 06/04/2020

The joy of driving, lightweight design and the rotary engine: three elements that define Mazda’s DNA – and continue to fascinate the team at the Hiroshima-based carmaker. One Mazda stands out from all the rest for giving all these elements a new level of meaning, cementing the compact rotary engined sports car in the minds of driving enthusiasts in Europe and around the world.

That model? The Mazda RX-7. Launched in 1978, Mazda’s first mass-market sports car would go on to become the best-selling rotary powered vehicle in history. And it also propelled the brand’s success on the race track to unprecedented levels.

The distinctive howl of the RX-7’s twin-rotor powerplant rocked race tracks in Europe and beyond from the beginning, winning the British Saloon Car Championship’s 1,600-2,300cm3 class in 1980 and 1981 and demonstrating its reliability by capturing the chequered flag at the 24 Hours of Spa, also in 1981. It was a golden age elsewhere, too. In the US, the RX-7 won over 100 IMSA races, more than any other model of any brand, dominating the GTU class (under 2,500cm3 ) including the 24 Hours of Daytona for an unparalleled 12 consecutive years (from 1982-93). The RX-7 also proved itself in the Australian Endurance Championship, winning from1982 through 1984, as well as that country’s Bathurst 12 Hour (champion 1992-95).

 

Proven on the raceway

This extensive experience gained racing the RX-7 would flow into the 710PS four-rotor Mazda 787B, which shocked the piston-powered racing establishment in 1991 by driving to victory at the illustrious 24 Hours of Le Mans. It remains the only winning car without a piston engine, and unquestionably one of the greatest moments in the history of rotary power.

The achievement is all the more astounding considering that the future of the rotary engine was in jeopardy when Mazda began developing the RX-7. The carmaker had offered rotaries in most of its models until the oil crisis of 1973-74, when skyrocketing fuel prices pushed the peppy but thirsty powerplants out of favour with consumers. Mazda decided to drop the engines for most of its sedans, hatchbacks and wagons, and might have abandoned them entirely – as had every other carmaker. But then-head of R&D Kenichi Yamamoto resisted, arguing how crucial a differentiator the rotary was for the company.

Yamamoto, who led the team of engineers that developed Mazda’s first rotary engines in the 1960s, set out to overhaul the existing 12A engine and significantly improve fuel economy. Among other things, his team added more durable apex seals – a problem spot – and improved lubrication. They then helped design the ideal vehicle for it. Small and light yet smooth running, powerful and rev-happy, the rotary was perfect for a sports car. And the RX-7, a sleek, low-slung coupe with a wedge-shaped nose and wraparound window on the rear hatch, was built specifically for this engine.

 

Creating a rotary icon

The first RX-7 generation (“FB” platform), which went on sale in Japan in 1978 before arriving in Europe the following year, was an immediate sensation. With a kerb weight of just over 1 tonne, the 12A’s 100-135PS (depending on market) went a long way in terms of performance. The front mid-engine layout – the compact engine sat behind the front axle – driving the rear wheels with near-perfect weight distribution also delivered amazing handling. The aerodynamic RX-7 punched well above its price class and was tremendously fun to drive, delivering a special connection between the driver and car. The 1,146cm3 twin-rotor 12A was later joined by 160PS turbo version for Japan, while North America got a slightly larger 13B powerplant with fuel injection.

The second-generation RX-7 (“FC”) introduced in 1985 featured a Porsche-inspired design and a number of performance improvements such as Mazda’s DTSS (Dynamic Tracking Suspension System) and turbocharging. Forced induction, it turns out, is very well suited to rotary engines thanks to their exhaust flow characteristics, and quite effective for boosting mid-range torque. The 1.3-litre 13B was standard for all markets now, and although the RX-7 would be offered in Europe initially with a naturally aspirated 150PS engine, 180PS and later 200PS twin-scroll turbo versions would follow. The higher-powered model could achieve a 6sec 0-100km/h time and a top speed of 240km/h.

The third and final generation (“FD”) that arrived in 1992 was a genuine performance car. A new sequential twin turbocharger boosted output from the latest 13B engine to 239PS on the European version. Said by fans to be the best handling of all RX-7s, the 5.3sec 0-100km/h sprint and 250km/h top speed (limited) put the 1,300kg two-seater in a league with high-end sports cars – fitting for the brand that had just won at Le Mans. Unfortunately, the RX-7 was discontinued in most of Europe by 1996 due to emissions regulations, although Mazda continued to produce cars for right-hand drive markets, eventually boosting power output on later Japan-only models to as high as 280PS.

 

Smashing record after record

The year 2002 marked the end of one of the most exceptional sports cars in history. A total of 811,634 were produced between 1978 and 2002, by far the most of any rotary model. Along the way, modified versions of each generation set land speed records in their class at the Bonneville Salt Flats in the US in 1978 (FB, 296km/h), 1986 (FC, 383.7km/h) and 1995 (FD, 389km/h).

The RX-7 spirit lives on. In the Mazda RX-8, which followed in 2003, and by laying the foundation for many engineering innovations to come. Among these were hydrogen-powered rotary Mazdas like the RX-8 Hydrogen RE, which ran on either h3 or petrol, and the Mazda Premacy Hydrogen RE Hybrid, an MPV featuring an electric drive motor and a dual-fuel rotary. Later, the company developed a prototype Mazda2 EV with a small single-rotor engine used as a range extender. A similar system could find its way onto the Mazda MX-30, a brand new battery electric crossover SUV arriving at dealerships this year.

Particularly among enthusiasts, the RX-7 remains the icon of rotary powered sports cars and indeed rotary production cars. Mazda made great leaps with the RX-7 in terms of lightweight engineering, sporty design and driving fun, expertise it has applied to and evolved for every current Mazda model. The vehicle that perhaps best embodies Mazda’s reputation for and dedication to the unconventional, the RX-7 continues to influence designers and engineers working on the Mazdas of tomorrow.

Mazda официально подтверждает возвращение роторного двигателя в 2019 году

Этот день, наконец, настал — Mazda через голос своего вице-президента по продажам и обслуживанию клиентов в Европе Мартейна тен Бринка подтвердила, что легендарный роторный двигатель вернется. Беседуя с ZerAuto.nl , Бринк раскрыл ряд очень интересных деталей относительно будущих планов компании.

Rotary продолжает движение

В соответствии с новым планом Zoom-Zoom 2030 Mazda построит чисто электрический автомобиль, который иногда появится в следующем году.Никаких других подробностей на данный момент нет, но Бринк подтвердил, что электромобиль будет опционально доступен с расширителем диапазона в виде нового двигателя Ванкеля. Несмотря на то, что роторный двигатель «не является действительно необходимым, потому что средний покупатель проезжает в среднем 60 километров в день от дома до работы и обратно», главная цель роторного двигателя — «избавить клиентов от любых опасений».

Рассматриваемая установка будет однодисковым двигателем и не будет использовать турбонагнетатель. Он будет действовать строго как генератор и будет расположен низко в конструкции, чтобы центр тяжести оставался низким.Будучи «размером с коробку из-под обуви», он обеспечивает работу без вибрации, и водитель даже не заметит, когда она запустится.

Тем не менее, несмотря на стремление к электрификации, Mazda по-прежнему считает, что двигатель внутреннего сгорания имеет потенциал. «В глазах Mazda топливный двигатель еще далеко не списан», — объясняет Бринк. «Даже через 15-25 лет топливный двигатель останется важным элементом для автомобилей, поскольку его используют как гибриды, так и подключаемые гибриды».

Автопроизводитель планирует повысить тепловой КПД своих двигателей внутреннего сгорания примерно до 56 процентов, что должно сделать будущие модели Mazda наравне с современными электромобилями с точки зрения выбросов от скважины к колесам.Технология Skyactiv-X, первый коммерчески доступный бензиновый двигатель с воспламенением от сжатия, будет готова появиться в выставочных залах в течение нескольких лет.

Источник: ZerAuto.nl

.Роторный двигатель Mazda

, напечатанный на 3D-принтере, радует нас 9000

В этом выпуске Engineering Explained Джейсон Фенске объясняет, как работает роторный двигатель Ванкеля. Используя напечатанную на 3D-принтере модель двигателя 13B-REW в масштабе 1/3 от FD Mazda RX-7, мы более подробно рассмотрим, как работают роторы. Роторный двигатель Ванкеля впервые был использован Mazda, когда компания представила Cosmo еще в 1967 году. Позже он использовался в пикапах, но не стал популярным, пока не нашел свое место в первом поколении RX-7 в 1978 году.С тех пор роторные двигатели и название RX-7 стали синонимами вплоть до финального производства RX-8 в 2012 году.

В отличие от обычных поршневых двигателей внутреннего сгорания, двигатель Ванкеля содержит внутри ротор. Взглянув на модель 13B-REW, вы можете увидеть внутри корпуса ротора, где происходит все самое интересное. Ротор в форме Дорито внутри является ключом к созданию мощности и вращается с помощью эксцентрикового вала. Вал и роторы вращаются вместе, в отличие от четырехтактного двигателя, в котором используется возвратно-поступательное движение.

7 Фото

Во время вращения ротора активны все три камеры процесса сгорания: такт впуска, рабочий ход и такт выпуска. Если у двигателя 13B два ротора, это означает, что шесть циклов выполняются одновременно. Этот процесс сгорания позволяет роторному двигателю создавать большую мощность по сравнению с аналогичным четырехтактным двигателем. Не имея дела с возвратно-поступательным движением массы, роторные двигатели могут без проблем развивать скорость до 9000 об / мин из-за инерции вращения.

Из-за длинной формы камеры сгорания из выхлопной трубы часто выходит несгоревшее топливо, что не очень эффективно. По своей конструкции роторные двигатели сжигают масло для герметизации камеры сгорания. Вот почему большинство владельцев RX-7 носят в багажнике литры масла. Слухи о возвращении Mazda RX-7 появляются каждый год, но произойдет ли это на самом деле? Время покажет.

Источник: Технические данные Разъяснения через YouTube

.

Mazda возродит роторный двигатель в своем электромобиле 2019 года, чтобы дать вам несколько дополнительных миль, если батарея разрядится

MAZDA подтвердила, что возрождает роторный двигатель в своем электромобиле, который поступит в продажу в 2019 году.

Японская компания сообщила, что технология, от которой она отказалась еще в 2012 году, вернется в ее новый автомобиль, чтобы увеличить запас хода, как только у вас закончится заряд.

3

Следующая Mazda 3, анонсированная концептом Kai, может получить роторно-гибридную технологию в 2019 году

И роторный двигатель будет использоваться как для ее подключаемых гибридных моделей, так и в качестве генератора для ее чисто электрической модели, которая должна появиться в 2021 году.

Mazda вложила миллионы в роторные технологии и сделала знаменитые спортивные автомобили, такие как RX-7 и RX-8.

Но он был вынужден окончательно отказаться от двигателя Ванкеля, потому что он не смог достичь целевых показателей выбросов.

Ключевой проблемой была его склонность к обратным результатам из-за сжигания излишков топлива, тяга к маслу и необходимость регулярного обслуживания.

3

Двигатель Ванкеля Mazda был снят с производства в 2012 году.

Но трехсторонний двигатель намного меньше и легче, чем традиционный двигатель, и способен обеспечивать огромную мощность для своих размеров.

Это делает его идеальным для использования в качестве расширителя запаса хода в гибриде и в качестве генератора для увеличения пробега на чисто электрическом автомобиле.

Хотя Mazda будет использовать эту технологию в своих электрических проектах, пока исключено создание преемника RX-8.

Несмотря на то, что концепт RX-Vision намекает на новый спортивный автомобиль, боссы признают, что он появится не раньше 2020 года.

Наука, лежащая в основе роторного двигателя Ванкеля

Роторный двигатель работает так же, как и обычный двигатель, но заменяет поршни ротором треугольной формы.

Он находится в корпусе овальной формы вместо обычных цилиндров.

Когда ротор движется, он всасывает воздух и топливо в различные пустые пространства камеры.

При вращении смесь сжимается, и она воспламеняется свечами зажигания.

Затем выхлопные газы вытесняются продолжающимся вращением.

В отличие от поршня, который движется вверх и вниз, весь процесс происходит одновременно, обеспечивая плавность и резкость подачи энергии.

Киёси Фудзивара, старший исполнительный директор Mazda и глава отдела исследований и разработок, сказал на Токийском автосалоне: «Мы не можем представить RX-Vision на рынке к 2020 году, потому что у нас нет достаточно денег, чтобы инвестировать и коммерциализировать его».

Роторные двигатели — в отличие от двигателей Ванкеля — изначально использовались 100 лет назад, но были выброшены после войны, потому что они были слишком грязными и потребляли топливо.

И мы ранее сообщали, что эта технология может стать спасением для гибридов с подключаемыми модулями на большие расстояния, по словам исследователя из Университета Бата.

3

RX-Vision намекает на новый роторный спортивный автомобиль — но это произойдет не раньше 2020 года

ELECTRIC AVENUE

Хотите отучить себя от бензина и дизеля и перейти на электрическую? Вот наш путеводитель

VOLTSWAGEN

Электромобили, которые скоро прибудут к зарядной станции рядом с вами (если таковая есть)

WILD RIDE

Tesla сейчас самая дорогая автомобильная компания стоимостью 208 миллиардов долларов — в 10 РАЗ больше, чем Chrysler

YOU GOTTA HAVE SOUL

Держите вещи простыми, но стильными с новым Kia Soul EV

FUELED FEARS FUELED

Нарастают опасения, что канцлер повысит пошлины на топливо впервые за десятилетие

Exclusive

ELECTRIC FUTURE

Босс Ford Стюарт Роули вышел из строя о плане Бориса Джонсона запретить гибридные автомобили

DIESEL DODGE

Gove восемь раз отказывается раскрыть стоимость бензиновых, дизельных и гибридных автомобилей.

POWER OF GOOD

Сколько времени нужно, чтобы зарядить электромобиль?

КОНЕЦ ДОРОГИ

Когда бензиновые и дизельные автомобили будут запрещены в Великобритании?

POWER UP

Электромобили с лучшим и худшим диапазоном расстояний — и сколько они вам будут стоить

,

Отправить ответ

avatar
  Подписаться  
Уведомление о