Пирометр что это: как работает, измерение температуры бесконтактным методом

Содержание

Как выбрать пирометр (2020) | Другие инструменты | Блог

Попробуйте, подсчитать, сколько приборов для измерения температуры вас окружает. Градусник, уличный термометр, домашний термометр, термометр в духовке, индикатор перегрева двигателя, термодатчики в холодильнике и морозильнике – причем это далеко не полный набор. И неудивительно – температура предметов и сред оказывает непосредственное влияние на сохранность продуктов, на работоспособность механизмов, электроники, да и нас самих. Поэтому точному измерению этой физической величины всегда придавалось большое значение.

Чаще всего мы меряем температуру контактным способом – с помощью термометра, прикладывая его к предмету или погружая в среду. Но иногда возникает необходимость произвести измерение на расстоянии. Как измерить температуру раскаленного куска металла? Быстро найти горячий участок трубопровода, проходящего на большой высоте? Определить, не перегревается ли высоковольтная шина? Контактный метод в этих случаях подходит плохо и на помощь приходят бесконтактные измерители — пирометры.

Принцип работы пирометров

Нагретые тела являются источниками инфракрасных лучей. И чем сильнее нагрето тело, тем мощнее ИК-излучение. Человеческий глаз не видит этого излучения, но для электронных сенсоров особой разницы между видимым светом и инфракрасным нет. Испускаемые предметом инфракрасные лучи проходят сквозь объектив и проецируются на сенсор, который по интенсивности излучения определяет температуру предмета.

Из принципа работы вытекают основные достоинства и недостатки пирометров. Инфракрасные лучи подчиняются законам оптики, но следует знать, что прозрачность многих материалов для инфракрасного излучения совсем не та, что для видимых лучей. Так, через обычное стекло проникают ИК-лучи с длиной волны не более 1 мкм. А большинство пирометров работает в диапазоне 8-14 мкм, и стекло для них будет непрозрачным.

Существует миф, что пирометр измеряет температуру с помощью лазерного луча – это не так, лазер служит только для прицеливания. Пятнышко лазерной указки на предмете еще не гарантирует того, что вы получите температуру именно предмета, а не оконного стекла, через которое прошел лазерный луч.

Пирометр может измерять температуру и по отраженному ИК-излучению – это может помочь при работе с труднодоступными деталями: не обязательно пытаться получить доступ к разогретой детали, для измерения температуры достаточно его отражения в зеркале. Но это же достоинство пирометра оборачивается и самым весомым недостатком – отраженный инфракрасный свет затрудняет измерение температуры и интересующего нас предмета, ведь какая-то часть ИК-излучения, идущая от него – отраженная. Чем выше отражающие способности материала, тем большую погрешность в результат вносят отраженные лучи. Для исключения этой погрешности следует знать коэффициент эмиссии поверхности предмета, температуру которого вы измеряете. Этот коэффициент характеризует отражающие способности материала и зависит от самого материала, от обработки поверхности (полировка может снизить этот коэффициент на порядок), от окраски и т.д. У большинства пирометров в руководстве приводится таблица с коэффициентами эмиссии распространенных материалов и вам потребуется ввести подходящее значение перед измерением.

У совсем простых моделей такой настройки нет, и они пригодны только для измерения температуры предметов из ограниченного списка материалов. В моделях подороже числа вводить не надо, вид материала можно выбрать в экранном меню. Но в любом случае как-то задать этот коэффициент потребуется – самостоятельно его приборы определить не в состоянии.

Еще один недостаток пирометров – они не измеряют температуру воздуха. Атомы воздуха слишком сильно рассредоточены, поэтому испускаемое ими инфракрасное излучение несравнимо мало по сравнению с излучением от любого предмета. Если даже у прибора есть функция измерения температуры воздуха, то это значит лишь, что в нем есть отдельный термометр внутри – и температуру он будет измерять только в месте нахождения.

Характеристики пирометров

Оптическое разрешение пирометра
Очевидно, «поле зрения» пирометра должно быть небольшим – чтобы пятно, которое «видит» сенсор, не превышало размеров предмета, температура которого нам интересна. Казалось бы, в чем проблема – надо подобрать объектив так, чтобы его угол зрения был минимальным. Но чем меньше площадь измеряемого пятна, тем меньше лучей проходит сквозь объектив и тем чувствительней должен быть сенсор. Поэтому оптическое разрешение пирометра – соотношение между расстоянием до предмета и диаметром пятна измерений – во многом определяет его функциональность и цену.

Приборы с небольшим оптическим разрешением – до 10:1 чаще используются для несложных измерений и в быту. Рабочее расстояние таких приборов – не более 1 метра, на больших расстояниях точность измерений сильно снижается.

Приборы с оптическим разрешением до 30:1 уже могут использоваться для измерения температуры небольших объектов на расстояниях до 3 метров.

Оптическое разрешение от 50:1 встречается обычно у профессиональных пирометров – они позволяют с высокой точностью измерять температуру тел на больших расстояниях, но и стоят в разы дороже бытовых.

Многие приборы снабжаются дополнительными функциями, позволяющими точнее «сфокусироваться» на интересующем вас объекте при одном и том же оптическом разрешении. Функция мин/макс значение, например, позволяет вывести на экран максимальное и минимальное значения температуры, которые прибор «увидел» внутри пятна. С этой функцией вы сможете определить температуру небольшого предмета, даже если пятно измерений больше его по размерам и в него попало много других, более холодных, предметов.

Некоторые приборы дают возможность настройки того, какую температуру будет показывать индикатор во время измерения: максимальную по пятну, среднюю или минимальную.

Функция непрерывного измерения пригодится при поиске точек утечки тепла или неисправных электрических элементов. С этой функцией вы можете перемещать лазерный маркер по интересующей вас поверхности, а пирометр будет в режиме непрерывного измерения выводить температуру поверхности в районе маркера.

Минимальная и максимальная определяемая температуры задают диапазон, в котором можно использовать прибор. Подбирайте параметры в соответствии с тем, каковы температуры интересующих вас объектов. Базовые модели обычно измеряют в пределах ‑50…500ºС, и для бытовых измерений этого вполне достаточно. Минимальная определяемая температура ниже -50 у этих приборов практически не встречается, а максимальная может достигать 2200ºС, но чем шире диапазон, тем дороже будет стоить пирометр.

Время отклика будет для вас важным, если нужно произвести множество измерений или если измеряемая температура меняется быстро. Например, под действием электрического тока некачественное контактное соединение может нагреться за секунду на сотни градусов. В этом случае времени отклика в 1 секунду будет слишком много – лучше брать прибор с временем отклика 0,5 секунд. Если и этого мало, придется раскошелиться – профессиональные модели обладают временем отклика до 0,15 секунд, но и стоят они соответственно.

Коэффициент эмиссии определяет, на какой материал настроен прибор. Бытовые приборы имеют коэффициент 0,95 – они подойдут для измерения температуры предметов из матового пластика, бетона, кирпичей, человеческого тела и т.д. (см. таблицу).

Если коэффициент эмиссии материала, температуру которого вы хотите измерить, сильно отличается от 0,95, то его нужно привести к нужному значению, наклеив на поверхность кусок изоленты, покрасив матовой краской и т.п. Если это невозможно сделать, то лучше сразу подбирать прибор с изменяемым коэффициентом эмиссии – большинство таких приборов позволяют задавать его в диапазоне от 0,1 до 1.

Определение влажности говорит о том, что в прибор встроен гигрометр. Он определяет влажность окружающего воздуха, но никак не предмета, на который нацелен лазерный маркер (как некоторые думают). Зачем это нужно? Чаще всего этой функцией пользуются для определения точки росы и оценки риска выпадения конденсата на исследуемых поверхностях.

Пирометры с определением влажности, как правило, умеют сами рассчитывать точку росы и при измерении температуры поверхности, могут сразу сообщить – появится ли на ней конденсат. Это может быть очень важно в складах, теплицах, да и в жилых помещениях тоже. Выпадение конденсата – неприятность само по себе, но при определенных температурах оно еще и способствует образованию плесени. Некоторые пирометры имеют функцию определения риска образования плесени.

Варианты выбора пирометров

Для бытовых целей вполне подойдет недорогой пирометр с диапазоном -50…500ºС – с его помощью вы сможете определить температуру сковородки, мяса в духовке или двигателя машины, не рискуя обжечься.

Для дистанционного определения температуры раскаленных и расплавленных металлов вам потребуется прибор с широким диапазоном и большим оптическим разрешением.

Если пирометр нужен вам, чтобы следить за климатом в помещениях, выбирайте среди приборов с определением влажности – он поможет вам избежать сырости и плесени.

Если вы делаете множество измерений, выбирайте среди приборов с памятью – чтобы избавить себя от необходимости записывать каждое значение.

Пирометр. Виды и устройство. Работа и применение. Как выбрать

Чтобы измерить температуру бесконтактным методом, используется пирометр, в народе его еще называют инфракрасный термометр. Это высокоточное оборудования позволяет измерять температуру, находясь в нескольких метрах от объекта.

Сейчас такое оборудование используется не только в промышленности, энергетики, медицине и других областях, есть и бытовые аппараты. Стоимость мобильных приборов невысокая, поэтому они эффективно применяются для контроля хранения продуктов, медикаментов, ими оснащаются пожарные команды и т.д.

Виды пирометров

Пирометр представляет собой сложное устройство, при помощи которого на расстоянии можно измерить температуру объекта в диапазоне от -50° до +3000°. Есть много технологий измерения и расшифровки инфракрасного излучения. Такие приборы классифицируют:

По методу работы:
  • Инфракрасные пирометры, у них также есть другое название — радиометры, в основе их работы лежит радиационный метод, а для точности наведения, они оснащаются лазерными прицелами.
  • Оптические, они работают в диапазонах видимого и инфракрасного излучения.
Оптические приборы имеют свою классификацию:
  • Яркостные, их принцип работы основан на сравнении цвета излучения встроенной нити и исследуемого объекта.
  • Цветовой, работает на основе сравнения яркости тела в разных областях спектра.
По коэффициенту излучения. Он может быть фиксированным или переменным.
По способу перемещения:
  • Стационарные устройства используются в разных отраслях промышленности.
  • Мобильные варианты используются в быту или там, где важна мобильность прибора.
По диапазону измерений:
  • Низкотемпературные пирометры могут измерять отрицательные температуры от -50°.
  • Высокотемпературные — они позволяют измерять температуру +400° и больше.
Устройство прибора

Несмотря на то, что существует большой выбор приборов, которые отличаются по размерам, возможностям и своему назначению, устройство у них практически одинаковое.

Стандартные приборы внешне походят на пистолет, и в своем составе имеют такие элементы:

  • Если присутствует лазерное наведение, то объект должен находиться в зоне прямой видимости. У оптоволоконных приборов есть оптоволоконный кабель, который можно изгибать. Недостатком  является то, что кабель надо расположить от объекта на определенном расстоянии, что не всегда удобно, зато сам измерительный прибор будет находиться на безопасном расстоянии вне зоны действия высокого давления, электромагнитных излучений и т.д.
  • Пирометр может иметь аналоговый или цифровой экран.
  • Чтобы обеспечить точность измерений, диаметр измеряемой поверхности, должен быть не менее 15 мм.
  • Кроме визуального контроля температуры, пирометры имеют и звуковое оповещение, оно срабатывает, когда достигается определенная граница измерений.
  • При выполнении нескольких измерений, есть возможность определить среднее значение.
  • Имеется возможность сохранения в памяти полученную информацию.
  • В большинстве современных устройствах уже есть USB выход, что позволяет быстро и просто считывать с них информацию.
Принцип действия

Рабочими элементами в инфракрасном пироскопе являются линза, приемник инфракрасного излучения и экран, на котором можно увидеть результаты измерений. От исследуемого объекта идет инфракрасное излучение, которое при помощи линзы фокусируется, а затем направляется в приемник, который может быть в виде полупроводника или термопары, а когда их несколько, то термобатареи.

Когда ИК-приемник нагревается, то изменяется напряжение, в случае использования термопары или сопротивление, когда используются полупроводники. Эти изменения при помощи электронной системы преобразуются в показания температуры и выводятся на дисплей.

Изменение температуры измеряемого объекта приводит к изменению его инфракрасного излучения и это все отражается на экране пироскопа. Для проведения измерений, надо просто навести пироскоп на исследуемый объект, нажать на спусковой крючок и зафиксировать полученный результат. При помощи кнопки, можно выбрать измерение температуры по шкале Фаренгейта или Цельсия.

Область применения

Основные сферы деятельности, где могут использоваться пирометры:
  • Строительство и теплоэнергетика. В этой области они используются для расчета теплопотерь зданий, также они помогают искать повреждения теплоизоляционного слоя на трубах, стенах и других объектах.
  • Бытовое применение. В бытовых условиях при помощи таких приборов определяют температур тела, воды, еды, деталей автомобилей и др.
  • Промышленность. Такие приборы позволяют на расстоянии анализировать температуру различных процессов, как в машиностроении, металлургии, так и в других областях промышленности.
  • Наука. Здесь они используются для определения точной температуры веществ и предметов, во время проведения различных опытов и исследований.
Как выбрать пирометр
Надо обращать внимание на следующие характеристики:
  • Диапазон измеряемых температур, надо учитывать, с какой целью вы его собираетесь использовать.
  • Спектральный диапазон, он должен соответствовать тому спектру, в котором планируете выполнять измерения.
  • Тип прицела, он может быть лазерным или оптическим, его выбор зависит от расстояния до объекта.
  • Оптическое разрешение, этот параметр характеризует расстояние до объекта и его размер.
  • Прибор одно- или двухцветный, первый вариант более популярный, а второй используют, когда обследуемый объект движется или быстро меняет температуру.
  • Наличие звуковой сигнализации, она срабатывает, когда значения температуры выходят за установленные пределы.
  • Способ вывода результатов, они могут просто выводиться на экран, запоминаться или передаваться на компьютер.
Достоинства инфракрасных пирометров:
  • Простая конструкция, поэтому они редко ломаются.
  • Удобная и несложная эксплуатация.
  • Невысокая стоимость.
  • Мобильность.
  • Хорошая разрешающая способность.
  • Способность проводить измерения температуры до — 50 градусов.
Наличие большого числа преимуществ, делают пирометр популярным и распространенным, но есть у него и некоторые недостатки:
  • Результат измерений будет зависеть от излучательной способности предмета, температура которого измеряется. Для компенсации такой погрешности, на современных приборах есть соответствующие регулировки.
  • На точность проводимых измерений имеет влияние расстояние между прибором и объектом.

Главное преимущество оптических пирометров в том, что точность измерений не зависит от излучательной способности предмета и от расстояния до него. Современные оптические пироскопы будут давать погрешность в 1 градус в диапазоне температур 600-2400°С. Основным их недостатком является высокая цена. Такие пирометры менее популярные, по сравнению с инфракрасными приборами.

Особенности работы

Чтобы получить максимально точные результаты измерений, надо четко соблюдать расстояние, с которого оно выполняется, узнать его можно из инструкции к каждому прибору.

Некоторые пирометры имеют спусковой механизм, который работает в двух положениях. Если клавишу нажать до половины, то можно сканировать неоднородные по температуре участки. На дисплее результат будет постоянно меняться. Во втором положении, определяется наивысшая температура, после чего она фиксируется на экране.

Наличие переключателя коэффициента излучения помогает правильно настроить пирометр и получить точные результаты. В комплекте с пироскопом, обычно есть таблица, согласно которой проводятся такие настройки.

Как и любые другие приборы, пирометры имеют свои недостатки, но благодаря им можно измерять температуру объекта бесконтактно, что делает их в некоторых случаях просто незаменимыми. Современные бытовые устройства имеют доступную стоимость и способны обеспечивать необходимую точность измерений.

Похожие темы:

что это такое? Для чего нужен? Как выбрать?

Наверх

  • Рейтинги
  • Обзоры

    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы

    • Покупка
    • Эксплуатация
    • Ремонт

Пирометр — это… Что такое Пирометр?

Переносной пирометр инфракрасного излучения

Стационарный пирометр инфракрасного излучения

Оптический пирометр

Пирометр — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Назначение

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

История

Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).

Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.

Классификация пирометров

Пирометры можно разделить по нескольким основным признакам:

  • Яркостные. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путем сравнения его цвета с цветом эталонной нити.
  • Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.
  • Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.

Температурный диапазон

  • Низкотемпературные. Обладают способностью показывать температуры объектов, обладающих даже отрицательными значениями этого параметра.
  • Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют сильное смещение в пользу «верхнего» предела измерения.

Исполнение

  • Переносные. Удобны в эксплуатации в условиях, когда необходима высокая точность измерений, в совокупности с хорошими подвижными свойствами, например для оценки температуры труднодоступных участков трубопроводов. Обычно снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
  • Стационарные. Предназначены для более точной оценки температуры объектов. Используются в основном в крупной промышленности, для непрерывного контроля технологического процесса производства расплавов металлов и пластиков.

Визуализация величин

  • Текстово-цифровой метод. Измеряемая температура выражается в градусах на цифровом дисплее. Попутно можно видеть дополнительную информацию.
  • Графический метод. Позволяет видеть наблюдаемый объект в спектральном разложении областей низких, средних и высоких температур, выделенных различными цветами.

Вне зависимости от классификации, пирометры могут снабжаться дополнительными источниками питания, а также средствами передачи информации и связи с компьютером или специализированными устройствами (обычно через шину RS-232).

Основные источники погрешности пирометров

Самыми важными характеристиками пирометра, определяющими точность измерения температуры являются оптическое разрешение и настройка степени черноты объекта [1].

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать термометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Cтепень черноты (или коэффициент излучения) характеризует свойства поверхности объекта, температуру которого измеряет пирометр. Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно черного тела при той же температуре. Он может принимать значения от 0,1 до близких к 1. Неправильный выбор коэффициента излучения — основной источник погрешности для всех пирометрических методов измерения температуры [2]. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075. [3]

Применения

Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения.

Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).

Лабораторные исследования — при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты)

Строительство — пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки.

Бытовое применение — измерение температуры тела, пищи при приготовлении, и многое другое.

Отдельная большая область применения пиросенсоров — датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.

Примечания

См. также

Ссылки

Литература

Книги

  • Линевег Ф. Измерение температур в технике. Справочник. — Москва «Металлургия», 1980
  • Криксунов Л. З. Справочник по основам инфракрасной техники. — М.: Советское радио, 1978. — 400 с.
  • Кременчугский Л. С., Ройцина О. В. Пироэлектрические приемники излучения. — Киев: Наук. думка, 1979. — 381 с.
  • Температурные измерения. Справочник. — Киев: Наукова думка, 1989, 703 с.
  • Рибо Г. Оптическая пирометрия, пер. с франц., М. — Л., 1934
  • Гордов А. Н. Основы пирометрии, 2 изд., М., 1971.

Журналы

  • Белозеров А. Ф., Омелаев А. И., Филиппов В. Л. Современные направления применения ИК радиометров и тепловизоров в научных исследованиях и технике. // Оптический журнал, 1998, № 6, с.16.
  • Скобло В. С. К оценке дальности действия тепловизионных систем. // Известия высших учебных заведений. Приборостроение. 2001. Т.44, № 1, с. 47.
  • Захарченко В. А., Шмойлов А. В. Приемник инфракрасного излучения // Приборы и техника эксперимента, 1979, № 3, с.220.
  • Исмаилов М. М., Петренко А. А., Астафьев А. А., Петренко А. Г. Инфракрасный радиометр для определения тепловых профилей и индикации разности температур. // Приборы и техника эксперимента, 1994, № 4, с.196.
  • Мухин Ю. Д., Подъячев С. П., Цукерман В. Г., Чубаков П. А. Радиационные пирометры для дистанционного измерения и контроля температуры РАПАН-1 и РАПАН-2 // Приборы и техника эксперимента, 1997, № 5, с.161.
  • Афанасьев А. В., Лебедев В. С., Орлов И. Я., Хрулев А. Е. Инфракрасный пирометр для контроля температуры материалов в вакуумных установках // Приборы и техника эксперимента, 2001, № 2, с.155-158.
  • Авдошин Е. С. Светопроводные инфракрасные радиометры (обзор) // Приборы и техника эксперимента, 1988, № 2, с.5.
  • Авдошин Е. С. Волоконный инфракрасный радиометр. // Приборы и техника эксперимента, 1989, № 4, с.189.
  • Сидорюк О. Е. Пирометрия в условиях интенсивного фонового излучения. // Приборы и техника эксперимента, 1995, № 4, с.201.
  • Порев В. А. Телевизионный пирометр // Приборы и техника эксперимента, 2002, № 1, с.150.
  • Широбоков А. М., Щупак Ю. А., Чуйкин В. М. Обработка тепловизионных изображений, получаемых многоспектральным тепловизором «Терма-2». // Известия высших учебных заведений. Приборостроение. 2002. Т.45, № 2, с.17.
  • Букатый В. И., Перфильев В. О. Автоматизированный цветовой пирометр для измерения высоких температур при лазерном нагреве. // Приборы и техника эксперимента, 2001, № 1, с.160.
  • Chrzanowski K., Bielecki Z., Szulim M. Comparison of temperature resolution of single-band, dual-band and multiband infrared systems // Applied Optics. 1999. Vol. 38 № 13. p. 2820.
  • Chrzanowski K., Szulim M. Error of temperature measurement with multiband infrared systems // Applied Optics. 1999. Vol. 38 № 10. p. 1998.

Пирометр — Википедия

Переносной пирометр инфракрасного излучения
Стационарный пирометр инфракрасного излучения
Оптический пирометр

Пироме́тр (от др.-греч. πῦρ «огонь, жар» + μετρέω «измеряю») — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света.

Назначение

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

История

Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).

Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.

Классификация пирометров

Пирометры можно разделить по нескольким основным признакам:

  • Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной накаливаемой электрическим током металлической нити в специальных измерительных лампах накаливания.
  • Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой спектральной полосе излучения, то такой пирометр называют пирометром полного излучения.
  • Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют измерить температуру объекта, основываясь на результатах сравнения его теплового излучения в различных участках спектра.

Температурный диапазон

  • Низкотемпературные. Обладают способностью измерять температуры объектов с низкими относительно комнатных температурами, например, температуры холодильных камер холодильников.
  • Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют существенную ошибку в сторону верхнего предела измерения прибора.

Исполнение

  • Переносные. Удобны в эксплуатации в условиях, когда необходима требуемая точность измерений, с мобильностью, например для измерения температуры участков трубопроводов в труднодоступных местах. Обычно такие переносные приборы снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
  • Стационарные. Предназначены для более точного измерения температуры объектов. Используются, в основном, на крупных промышленных предприятиях для непрерывного контроля технологического процесса при производстве расплавленных металлов и пластиков.

Визуализация величин

  • Текстово-цифровой метод. Измеряемая температура выражается в градусах на цифровом дисплее. Попутно можно видеть дополнительную информацию.
  • Графический метод. Позволяет видеть наблюдаемый объект в спектральном разложении областей низких, средних и высоких температур, выделенных различными цветами.

Вне зависимости от классификации, пирометры могут снабжаться дополнительными источниками питания, а также средствами передачи информации и связи с компьютером или специализированными устройствами (обычно через шину RS-232).

Основные источники погрешности пирометров

Самыми важными характеристиками пирометра, определяющими точность измерения температуры, являются оптическое разрешение и настройка степени черноты объекта[1].

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром, к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать пирометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Коэффициент эмиссии ε (коэффициент излучения, степень черноты) — способность материала отражать падающее излучение. Данный показатель важен при измерении температуры поверхности с помощью инфракрасного термометра (пирометра). Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно чёрного тела при той же температуре. Он может принимать значения от 0 до 1[2]. Применение неверного коэффициента эмиссии — один из основных источников возникновения погрешности измерений для всех пирометрических методов измерения температуры. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075.

Применения

Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения.

Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).

Лабораторные исследования — при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты)

Строительство — пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки.

Бытовое применение — измерение температуры тела, пищи при приготовлении, и многое другое.

Отдельная большая область применения пиросенсоров — датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.

См. также

Примечания

Литература

Книги

  • Линевег Ф. Измерение температур в технике. Справочник. — Москва «Металлургия», 1980
  • Криксунов Л. З. Справочник по основам инфракрасной техники. — М.: Советское радио, 1978. — 400 с.
  • Кременчугский Л. С., Ройцина О. В. Пироэлектрические приемники излучения. — Киев: Наук. думка, 1979. — 381 с.
  • Температурные измерения. Справочник. — Киев: Наукова думка, 1989, 703 с.
  • Рибо Г. Оптическая пирометрия, пер. с франц., М. — Л., 1934
  • Гордов А. Н. Основы пирометрии, 2 изд., М., 1971.
  • Сосновский А. Г., Столярова Н. И. Измерение температур. — М.: Комитет стандартов, мер и измерительных приборов, 1970. — С. 257.
  • Ранцевич В. Б. Пирометрия при посторонних источниках излучения. — Минск: Наука и техника.: , 1989, -104с..

Журналы

  • Белозеров А. Ф., Омелаев А. И., Филиппов В. Л. Современные направления применения ИК радиометров и тепловизоров в научных исследованиях и технике. // Оптический журнал, 1998, № 6, с.16.
  • Скобло В. С. К оценке дальности действия тепловизионных систем. // Известия высших учебных заведений. Приборостроение. 2001. Т.44, № 1, с. 47.
  • Захарченко В. А., Шмойлов А. В. Приемник инфракрасного излучения // Приборы и техника эксперимента, 1979, № 3, с.220.
  • Исмаилов М. М., Петренко А. А., Астафьев А. А., Петренко А. Г. Инфракрасный радиометр для определения тепловых профилей и индикации разности температур. // Приборы и техника эксперимента, 1994, № 4, с.196.
  • Мухин Ю. Д., Подъячев С. П., Цукерман В. Г., Чубаков П. А. Радиационные пирометры для дистанционного измерения и контроля температуры РАПАН-1 и РАПАН-2 // Приборы и техника эксперимента, 1997, № 5, с.161.
  • Афанасьев А. В., Лебедев В. С., Орлов И. Я., Хрулев А. Е. Инфракрасный пирометр для контроля температуры материалов в вакуумных установках // Приборы и техника эксперимента, 2001, № 2, с.155-158.
  • Авдошин Е. С. Светопроводные инфракрасные радиометры (обзор) // Приборы и техника эксперимента, 1988, № 2, с.5.
  • Авдошин Е. С. Волоконный инфракрасный радиометр. // Приборы и техника эксперимента, 1989, № 4, с.189.
  • Сидорюк О. Е. Пирометрия в условиях интенсивного фонового излучения. // Приборы и техника эксперимента, 1995, № 4, с.201.
  • Порев В. А. Телевизионный пирометр // Приборы и техника эксперимента, 2002, № 1, с.150.
  • Широбоков А. М., Щупак Ю. А., Чуйкин В. М. Обработка тепловизионных изображений, получаемых многоспектральным тепловизором «Терма-2». // Известия высших учебных заведений. Приборостроение. 2002. Т.45, № 2, с.17.
  • Букатый В. И., Перфильев В. О. Автоматизированный цветовой пирометр для измерения высоких температур при лазерном нагреве. // Приборы и техника эксперимента, 2001, № 1, с.160.
  • Chrzanowski K., Bielecki Z., Szulim M. Comparison of temperature resolution of single-band, dual-band and multiband infrared systems // Applied Optics. 1999. Vol. 38 № 13. p. 2820.
  • Chrzanowski K., Szulim M. Error of temperature measurement with multiband infrared systems // Applied Optics. 1999. Vol. 38 № 10. p. 1998.

Ссылки

Пирометр — Википедия

Переносной пирометр инфракрасного излучения
Стационарный пирометр инфракрасного излучения
Оптический пирометр

Пироме́тр (от др.-греч. πῦρ «огонь, жар» + μετρέω «измеряю») — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта преимущественно в диапазонах инфракрасного излучения и видимого света.

Назначение

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

История

Один из первых пирометров изобрёл Питер ван Мушенбрук. Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже).

Развитие современной пирометрии и портативных пирометров началось с середины 60-х годов прошлого столетия и продолжается до сих пор. Именно в это время были сделаны важнейшие физические открытия, позволившие начать производство промышленных пирометров с высокими потребительскими характеристиками и малыми габаритными размерами. Первый портативный пирометр был разработан и произведен американской компанией Wahl в 1967 году. Новый принцип построения сравнительных параллелей, когда вывод о температуре тела производился на основе данных инфракрасного приемника, определяющего количество излучаемой телом тепловой энергии, позволил существенно расширить границы измерения температур твердых и жидких тел.

Классификация пирометров

Пирометры можно разделить по нескольким основным признакам:

  • Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной накаливаемой электрическим током металлической нити в специальных измерительных лампах накаливания.
  • Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой спектральной полосе излучения, то такой пирометр называют пирометром полного излучения.
  • Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют измерить температуру объекта, основываясь на результатах сравнения его теплового излучения в различных участках спектра.

Температурный диапазон

  • Низкотемпературные. Обладают способностью измерять температуры объектов с низкими относительно комнатных температурами, например, температуры холодильных камер холодильников.
  • Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют существенную ошибку в сторону верхнего предела измерения прибора.

Исполнение

  • Переносные. Удобны в эксплуатации в условиях, когда необходима требуемая точность измерений, с мобильностью, например для измерения температуры участков трубопроводов в труднодоступных местах. Обычно такие переносные приборы снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
  • Стационарные. Предназначены для более точного измерения температуры объектов. Используются, в основном, на крупных промышленных предприятиях для непрерывного контроля технологического процесса при производстве расплавленных металлов и пластиков.

Визуализация величин

  • Текстово-цифровой метод. Измеряемая температура выражается в градусах на цифровом дисплее. Попутно можно видеть дополнительную информацию.
  • Графический метод. Позволяет видеть наблюдаемый объект в спектральном разложении областей низких, средних и высоких температур, выделенных различными цветами.

Вне зависимости от классификации, пирометры могут снабжаться дополнительными источниками питания, а также средствами передачи информации и связи с компьютером или специализированными устройствами (обычно через шину RS-232).

Основные источники погрешности пирометров

Самыми важными характеристиками пирометра, определяющими точность измерения температуры, являются оптическое разрешение и настройка степени черноты объекта[1].

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром, к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать пирометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Коэффициент эмиссии ε (коэффициент излучения, степень черноты) — способность материала отражать падающее излучение. Данный показатель важен при измерении температуры поверхности с помощью инфракрасного термометра (пирометра). Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно чёрного тела при той же температуре. Он может принимать значения от 0 до 1[2]. Применение неверного коэффициента эмиссии — один из основных источников возникновения погрешности измерений для всех пирометрических методов измерения температуры. На коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075.

Применения

Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения.

Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов (железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).

Лабораторные исследования — при проведении исследований активных веществ в активных средах, а также в тех случаях, при которых контактный метод нарушает чистоту эксперимента (например, тело настолько мало что при измерении контактным методом потеряет существенную часть теплоты, или просто слишком хрупкое для такого типа измерения). Применяется в космонавтике (контроль, опыты)

Строительство — пирометры применяют для определения теплопотерь в зданиях жилого и промышленного назначения, на теплотрассах, для эффективного нахождения прорывов теплоизоляционной оболочки.

Бытовое применение — измерение температуры тела, пищи при приготовлении, и многое другое.

Отдельная большая область применения пиросенсоров — датчики движения в системах охраны зданий. Датчики реагируют на изменение инфракрасного излучения в помещении.

См. также

Примечания

Литература

Книги

  • Линевег Ф. Измерение температур в технике. Справочник. — Москва «Металлургия», 1980
  • Криксунов Л. З. Справочник по основам инфракрасной техники. — М.: Советское радио, 1978. — 400 с.
  • Кременчугский Л. С., Ройцина О. В. Пироэлектрические приемники излучения. — Киев: Наук. думка, 1979. — 381 с.
  • Температурные измерения. Справочник. — Киев: Наукова думка, 1989, 703 с.
  • Рибо Г. Оптическая пирометрия, пер. с франц., М. — Л., 1934
  • Гордов А. Н. Основы пирометрии, 2 изд., М., 1971.
  • Сосновский А. Г., Столярова Н. И. Измерение температур. — М.: Комитет стандартов, мер и измерительных приборов, 1970. — С. 257.
  • Ранцевич В. Б. Пирометрия при посторонних источниках излучения. — Минск: Наука и техника.: , 1989, -104с..

Журналы

  • Белозеров А. Ф., Омелаев А. И., Филиппов В. Л. Современные направления применения ИК радиометров и тепловизоров в научных исследованиях и технике. // Оптический журнал, 1998, № 6, с.16.
  • Скобло В. С. К оценке дальности действия тепловизионных систем. // Известия высших учебных заведений. Приборостроение. 2001. Т.44, № 1, с. 47.
  • Захарченко В. А., Шмойлов А. В. Приемник инфракрасного излучения // Приборы и техника эксперимента, 1979, № 3, с.220.
  • Исмаилов М. М., Петренко А. А., Астафьев А. А., Петренко А. Г. Инфракрасный радиометр для определения тепловых профилей и индикации разности температур. // Приборы и техника эксперимента, 1994, № 4, с.196.
  • Мухин Ю. Д., Подъячев С. П., Цукерман В. Г., Чубаков П. А. Радиационные пирометры для дистанционного измерения и контроля температуры РАПАН-1 и РАПАН-2 // Приборы и техника эксперимента, 1997, № 5, с.161.
  • Афанасьев А. В., Лебедев В. С., Орлов И. Я., Хрулев А. Е. Инфракрасный пирометр для контроля температуры материалов в вакуумных установках // Приборы и техника эксперимента, 2001, № 2, с.155-158.
  • Авдошин Е. С. Светопроводные инфракрасные радиометры (обзор) // Приборы и техника эксперимента, 1988, № 2, с.5.
  • Авдошин Е. С. Волоконный инфракрасный радиометр. // Приборы и техника эксперимента, 1989, № 4, с.189.
  • Сидорюк О. Е. Пирометрия в условиях интенсивного фонового излучения. // Приборы и техника эксперимента, 1995, № 4, с.201.
  • Порев В. А. Телевизионный пирометр // Приборы и техника эксперимента, 2002, № 1, с.150.
  • Широбоков А. М., Щупак Ю. А., Чуйкин В. М. Обработка тепловизионных изображений, получаемых многоспектральным тепловизором «Терма-2». // Известия высших учебных заведений. Приборостроение. 2002. Т.45, № 2, с.17.
  • Букатый В. И., Перфильев В. О. Автоматизированный цветовой пирометр для измерения высоких температур при лазерном нагреве. // Приборы и техника эксперимента, 2001, № 1, с.160.
  • Chrzanowski K., Bielecki Z., Szulim M. Comparison of temperature resolution of single-band, dual-band and multiband infrared systems // Applied Optics. 1999. Vol. 38 № 13. p. 2820.
  • Chrzanowski K., Szulim M. Error of temperature measurement with multiband infrared systems // Applied Optics. 1999. Vol. 38 № 10. p. 1998.

Ссылки

Что такое пирометр и как им пользоваться

Дистанционное измерение температуры необходимо не только при контроле производственных процессов, но и является частью процесса наладки автономного отопления. После просчета удельной мощности нагревательных приборов и их монтажа необходимо проверить фактические температурные показатели. Лучше всего для этого применять инфракрасные пирометры.

Содержание статьи

Конструкция и принцип работы

Для измерения температуры поверхности материалов есть множество типов приборов. По своему применению они различаются на контактные и с дистанционным снятием показаний. Пирометры относятся к последнему классу устройств.

Принцип их работы основан на измерении тепловых волн, которые излучает нагретая поверхность. Общая схема устройства показана ниже:

shema_pirometrshema_pirometr

Излучение попадает через раструб прибора на пирометрический датчик. В нем тепловая энергия преобразовывается в электрическую. Мощность получаемого сигнала зависит от температуры измеряемой поверхности – чем она выше, тем большая сила тока будет генерироваться датчиком. С помощью электронного преобразователя исходные данные выводятся на жидкокристаллический дисплей.

teplovizorteplovizor Есть еще одна разновидность пирометров – так называемые тепловизоры. Принцип их работы основан на сравнении спектра теплового излучения с эталонным.

На цветной экран проецируется картинка тепловых волн от объектов, попавших в объектив устройства. По спектральной характеристике можно определить величину температуры и визуально наблюдать ее градиентное изменение на площади измеряемого материала. Тепловизоры нашли практическое применение и для автономного частного отопления. С их помощью можно точно определить место протечки в скрытом трубопроводе.

Технические характеристики

Как и любой прибор измерения, работа инфракрасного пирометра характеризуется определенными параметрами. Выбор определенной модели осуществляется по их значениям. Рассмотрим самые важные из них.

Оптическое разрешение

Он определяет площадь объекта, на поверхности которого измеряется температура. Он напрямую зависит от угла объектива устройства. Чем он больше, тем значительнее будет площадь измерения температуры. При этом учитывается расстояние до объекта.

pirometr-1pirometr-1

Главным условием проведения точного измерения является наложение пятна только на материал поверхности. В случае превышения площади значение температуры будет неточным. Оптическое разрешение – это величина отношения диаметра пятна прибора к расстоянию до объекта. В зависимости от модели оно может быть равным от 2:1 до 600:1. Последнее относится к классу профессиональных устройств, применяемых для снятия показаний нагрева поверхности в тяжелой промышленности. Для бытовых и полупрофессиональных пирометров оптимальный показатель равен 10:1.

Рабочий диапазон

aox-011aox-011Определяется параметрами пирометрического датчика. В большинстве случаев он составляет от -30°С до 360°С. Учитывая, что теплоноситель в системе отопления может иметь максимальную температуру до 110°С, для бытовых целей можно применять практически все виды пирометров.

Погрешность

Указывает степень колебаний значений температуры в зависимости от точности настроек устройства. В среднем допускаются отклонения около 2% от нормированного показания.

Коэффициент излучения

Это отношение мощности температурного излучения при текущей температуре к такому же параметру эталонного абсолютно черного тела. Для неблестящих материалов он составляет 0,9-0,95. Поэтому большинство устройств дистанционного измерения температуры настроены именно на это значение. Однако, если попытаться ими измерить степень нагрева поверхности блестящего алюминия, то значение на индикаторе будет значительно отличаться от фактического.


Для точности измерения многие модели оборудуются лазерной указкой. Световое пятно располагается не в центре, а указывает оптимальную границу области измерения.

izmerenieizmerenie

Как пользоваться

После приобретения прибора необходимо внимательно ознакомиться с инструкцией. Несмотря на несложные правила эксплуатации, неправильные действия могут привести к значительным искажениям температурных значений. Порядок измерения степени нагрева материала с помощью пирометра:

  • Включить устройство.
  • Направить раструб на измеряемую поверхность.
  • С помощью лазерной указки определить границу пятна измерения.
  • После активации на экране появятся значения температур. В зависимости от модели они могут быть записаны в память устройства или будут заменены значениями следующих измерений.

Как видно, на практике пирометром может пользоваться каждый. Поэтому он становится обязательным прибором измерения для работников компаний, занимающихся проектированием и монтажом автономных систем отопления.

Принцип работы, типы, преимущества и недостатки

Физическая величина, которая может быть описана как горячность или холод любого объекта или вещества, называется температурой. Его можно измерить в различных единицах и масштабах в зависимости от требований. Температуру любого материала можно измерить с помощью различных методов и устройств. Устройства для измерения температуры используются для измерения уровня энергии физического свойства или любого вещества. В зависимости от физических свойств материала температуру можно измерить с помощью таких методов, как термометры (жидкость в стекле), электрический термометр сопротивления, радиационный термометр / инфракрасные термометры / пирометры, термопара, кремниевый диод, биметаллические устройства, колбы и капиллярные устройства. , газовые термометры постоянного объема и газовые термометры под давлением.Единица измерения температуры в системе СИ — Кельвин (k), кроме этого, ее можно измерять в шкале Цельсия (C) и шкале Фаренгейта (F). В этой статье обсуждается, что такое пирометр, принцип работы, типы, преимущества, недостатки и области применения.

Что такое пирометр?

Пирометр также известен как инфракрасный термометр или радиационный термометр или бесконтактный термометр, используемый для определения температуры поверхности объекта, которая зависит от излучения (инфракрасного или видимого), испускаемого объектом.Пирометры действуют как фотодетекторы из-за способности поглощать энергию и измерять интенсивность электромагнитных волн на любой длине волны.

Используются для измерения высокотемпературных печей. Эти устройства могут измерять температуру очень точно, точно, чисто визуально и быстро. Пирометры доступны в разных спектральных диапазонах (поскольку металлы — коротковолновые, а неметаллы — длинноволновые).

Pyrometer-Diagram Pyrometer-Diagram Схема пирометра

Цветные пирометры используются для измерения излучения, испускаемого объектом во время измерения температуры.Они могут очень точно измерить температуру объекта. Следовательно, эти устройства имеют очень низкие ошибки измерения.

Цветные пирометры используются для определения соотношения двух интенсивностей излучения с двумя спектральными диапазонами. Они доступны в сериях Metis M3 и h4 и портативных портативных компьютерах Capella C3 в различных версиях.

Высокоскоростные пирометры используются для измерения температуры быстрее и быстрее, чем устройства M3. Они доступны в комбинации с одноцветными и двухцветными пирометрами.Эти устройства могут создавать четкие температурные профили быстро движущихся объектов и контролировать соответствующий уровень температуры.

PCBWay PCBWay

Принцип работы пирометра

Пирометры — это устройства для измерения температуры, используемые для определения температуры объекта и электромагнитного излучения, испускаемого объектом. Они доступны в разных спектральных диапазонах. По спектральному диапазону пирометры подразделяются на одноцветные пирометры, двухцветные пирометры и высокоскоростные пирометры.

Основной принцип пирометра заключается в том, что он измеряет температуру объекта, ощущая тепло / излучение, исходящее от объекта, без контакта с ним. Он регистрирует уровень температуры в зависимости от интенсивности испускаемого излучения. Пирометр состоит из двух основных компонентов, таких как оптическая система и детекторы, которые используются для измерения температуры поверхности объекта.

Когда берется любой объект, температура поверхности которого должна быть измерена пирометром, оптическая система улавливает энергию, излучаемую объектом.Затем излучение направляется на детектор, который очень чувствителен к волнам излучения. Выходной сигнал детектора относится к уровню температуры объекта из-за излучения. Обратите внимание, что температура детектора, анализируемая с использованием уровня излучения, прямо пропорциональна температуре объекта.

Излучение, испускаемое каждым объектом с его фактической температурой, превышает абсолютную температуру (-273,15 градусов по Цельсию). Это испускаемое излучение называется инфракрасным, которое находится выше видимого красного света в электромагнитном спектре.Излучаемая энергия используется для определения температуры объекта и преобразуется в электрические сигналы с помощью детектора.

Типы пирометров

Для определения температуры различных объектов пирометры делятся на 2 типа. Это,

  • Оптические пирометры
  • Инфракрасные / радиационные пирометры
Оптические пирометры

Это один из типов пирометров, используемых для обнаружения теплового излучения видимого спектра.Измеренная температура горячих объектов будет зависеть от излучаемого ими видимого света. Оптические пирометры способны обеспечить визуальное сравнение откалиброванного источника света и поверхности целевого объекта. Когда температура нити накала и поверхности объекта одинакова, тогда интенсивность теплового излучения, вызванного нитью, сливается с поверхностью целевого объекта и становится невидимой. Когда происходит этот процесс, ток, проходящий через нить накала, преобразуется в уровень температуры.

Optical-Pyrometer Optical-Pyrometer оптический пирометр

Инфракрасный или радиационный пирометр

Эти пирометры предназначены для обнаружения теплового излучения в инфракрасной области, которая обычно находится на расстоянии 2-14 мкм. Он измеряет температуру целевого объекта по испускаемому излучению. Это излучение можно направить на термопару для преобразования в электрические сигналы. Поскольку термопара способна генерировать более высокий ток, равный выделяемому теплу. Инфракрасные пирометры состоят из пироэлектрических материалов, таких как поливинилиденфторид (PVDF), триглицинсульфат (TGS) и танталат лития (LiTaO3).

Radiation or Infrared Pyrometer Radiation or Infrared Pyrometer радиационный или инфракрасный пирометр

Преимущества / недостатки

Обычно пирометры сравнивают с термометрами, а также имеют некоторые преимущества и недостатки при использовании.

Преимущества пирометра:

  • Он может измерять температуру объекта без какого-либо контакта с ним. Это называется бесконтактным измерением.
  • Имеет быстрое время отклика.
  • Хорошая стабильность при измерении температуры объекта.
  • Может измерять температуру различных типов объектов на разных расстояниях.

Недостатками пирометра являются

  • Пирометры обычно прочные и дорогие
  • На точность прибора могут влиять различные условия, такие как пыль, дым и тепловое излучение.

Приложения

Пирометры используются в различных приложениях, например,

  • для измерения температуры движущихся объектов или постоянных объектов с большого расстояния.
  • В металлургической промышленности
  • В плавильной промышленности
  • Воздушные шары для измерения тепла в верхней части баллона
  • Паровые котлы для измерения температуры пара
  • Для измерения температуры жидких металлов и сильно нагретых материалов.
  • Для измерения температуры печи.

Часто задаваемые вопросы

1). В чем разница между термометром и пирометром

Термометр — это устройство для измерения температуры (контактное измерение), а пирометр — это термометр с дистанционным зондированием и бесконтактное устройство для измерения высоких температур

2).Что такое оптический пирометр?

Приборы для бесконтактного измерения температуры, работающие по принципу яркости целевого объекта и яркости нити накала внутри пирометра.

3). Какие приборы используются для измерения температуры?
  • Термометры, термопары, пирометры, термометры (жидкость в стекле)
  • Электрический термометр сопротивления
  • Радиационный термометр / инфракрасные термометры
  • Термопара
  • Кремниевый диод
  • Биметаллические устройства
  • Колбы и капиллярные устройства
  • Постоянный объем газа и газовые термометры давления
4).Как мы измеряем температуру?

Он измеряется термометром, откалиброванным в различных температурных шкалах, таких как шкала Цельсия (шкала Цельсия обозначается как градусы C), шкала Фаренгейта и шкала Кельвина (K).

5). Что такое единица измерения температуры в системе СИ?

Единица измерения температуры в системе СИ — Кельвин (K).

.

Пирометр | измерительное устройство | Britannica

Пирометр , устройство для измерения относительно высоких температур, которые встречаются в печах. Большинство пирометров работают, измеряя излучение от тела, температуру которого необходимо измерить. Радиационные устройства имеют то преимущество, что им не нужно прикасаться к измеряемому материалу. Например, оптические пирометры измеряют температуру раскаленных тел, сравнивая их визуально с откалиброванной нитью накаливания, температуру которой можно регулировать.В пирометре с элементарным излучением излучение горячего объекта фокусируется на термобатареи, совокупности термопар, которая генерирует электрическое напряжение, зависящее от перехваченного излучения. Правильная калибровка позволяет преобразовать это электрическое напряжение в температуру горячего объекта.

Пирометр оптический Пирометр оптический. MichiK

Британская викторина

Гаджеты и технологии: факт или вымысел?

Голограммы часто встречаются на кредитных картах.

В пирометрах сопротивления тонкая проволока контактирует с объектом. Прибор преобразует изменение электрического сопротивления, вызванное нагревом, в показания температуры объекта. Пирометры с термопарой измеряют выходной сигнал термопары ( q.v. ), находящейся в контакте с горячим телом; при правильной калибровке на этом выходе отображается температура. Пирометры очень похожи на болометр и термистор и используются в термометрии.

.

Что такое оптический пирометр? — Определение, конструкция, работа, преимущества и недостатки

Определение: Оптический пирометр — это устройство для измерения температуры бесконтактного типа. Он работает по принципу согласования яркости объекта с яркостью нити накала, помещенной внутри пирометра. Оптический пирометр используется для измерения температуры печей, расплавленных металлов и других перегретых материалов или жидкостей.

Невозможно измерить температуру сильно нагретого тела с помощью прибора контактного типа.Следовательно, бесконтактный пирометр используется для измерения их температуры.

Конструкция оптического пирометра

Конструкция оптического пирометра довольно проста. Пирометр имеет цилиндрическую форму, внутри которого на одном конце размещается линза, а на другом — окуляр. Лампа находится между окуляром и линзой. Фильтр размещается перед окуляром. Фильтр помогает получить монохроматический свет. Лампа имеет нить накала, подключенную к батарее, амперметру и реостату.

Работа оптического пирометра

Оптический пирометр показан на рисунке ниже. Он состоит из линзы, которая фокусирует энергию, излучаемую нагретым объектом, и направляет ее на электрическую лампу накаливания. Интенсивность нити накала зависит от протекающего через нее тока. Следовательно, регулируемый ток проходит через лампу.

optical-pyrometer-image

Величина тока регулируется до тех пор, пока яркость нити накала не станет аналогичной яркости объекта.Когда яркость нити накала и яркость объекта одинаковы, контур нити полностью исчезает.

optical-pyrometer-image-3

Нити накаливания выглядят яркими, когда их температура превышает температуру источника. optical-pyrometer-image-1

Нити накаливания выглядят темными, если их температура ниже, чем требуется для равной яркости

optical-pyrometer-image-2

Преимущества оптического пирометра

  • Оптический пирометр имеет высокую точность.
  • Температура измеряется без контакта с нагретым телом. Благодаря этому свойству пирометр используется в ряде приложений.

Недостатки оптического пирометра

Работа пирометра зависит от силы света, излучаемого нагретым телом. Таким образом, пирометр используется для измерения температуры, превышающей 700 градусов Цельсия. Точность пирометра зависит от регулировки тока накала.Также пирометр не используется для измерения температуры чистых газов.

,Пирометр

— Википедия

Пирометр (von altgriechisch πῦρ pyr , deutsch ‚Feuer‘), auch Strahlungsthermometer genannt, dienen zur berührungsmelossung Temperatur. Temperaturen zwischen −50 ° C и +3000 ° C können mit solchen Geräten gemessen werden.

Messung der Temperatur an Lüftungsschächten mit einem Pyrometer mit Messfleckmarkierung
Berührungsloses Messen an unter Spannung stehenden Anlagen
Пирометр für den Hausgebrauch

Der eigentliche Erfinder des Pyrometers ist schwer festzustellen.Питер ван Мусхенбрук и Иосия Веджвуд, занимающийся производством эрфундирования, дас сие унд аух и др. Виссеншафтлер, цайт [1] Нанненнтэн для пирометров, доц. Die Encyclopædia Britannica nennt William Chandler Roberts-Austen als Erfinder des Pyrometers. [2]

Jeder Gegenstand mit einer Temperatur größer 0 Kelvin emittiert Wärmestrahlung, deren Intensität und Lage des Emissionsmaximums von seiner Temperatur abhängt.Diese Strahlung wird mit dem Pyrometer erfasst und ausgewertet. Wenn das Messobjekt kälter als das Pyrometer ist, ist der Strahlungsfluss negativ, d. час das Pyrometer gibt Wärmestrahlung an das Messobjekt ab (был auf den 2. Hauptsatz der Thermodynamik zurückzuführen ist) был man ebenfalls auswerten kann.

Grundlage bildet das Stefan-Boltzmann-Gesetz, nach dem die Gesamtstrahlungsleistung P für einen idealen Schwarzen Körper von der absoluten Temperatur T (in K) und der Fläche A (in m²) abhängt.{4}}.

Für eine berührungslose Temperaturmessung muss man den Emissionsgrad ε {\ displaystyle \ varepsilon}, также die Wärmeabstrahlfähigkeit des Messobjekts kennen.

In einem Quotientenpyrometer (auch Verhältnispyrometer или 2-Farben-Pyrometer genannt) wird nicht die Intensität (Energiegröße) in nur einem Wellenlängenbereich gemessenbench derbiliste de de la de la de la de de la de de la de de la de de la de de de la de de la de de la de de la de de Ferien. [3] Das bedeutet, dass die Temperatur nicht aufgrund der Helligkeit , sondern aufgrund der Farbe der Strahlung bestimmt wird.Bei diesem Verfahren spielt der Emissionsgrad bei der Verhältnisbildung (Kürzen bei der Division) für die Messung keine Rolle, wenn er für das betreffende Messgut nicht stark wellenlängenabhängig ist. Die Anzeige gibt die Durchschnittstemperatur im Messfeld an.

Пирометр werten manchmal nur einen durch einen Filter auf einen bestimmten Wellenlängenbereich eingeschränkten kleinen Teil des Strahlungsspektrums aus. Man nennt sie Schmalbandpyrometer — die Signalauswertung wird einfacher, da der spektrale Empfindlichkeitsverlauf des Sensors hier eine vernachlässigbare Rolle spielt.

Ist der Wellenlängenbereich breiter, spricht man von einem Bandstrahlungspyrometer .

Unter einem Gesamtstrahlungspyrometer versteht man ein Gerät, welches die Ausstrahlung einer Messoberfläche über den gesamten Spektralbereich erfasst. Da jedoch die zum Pyrometer gehörigen Linsen, Fenster und Strahlungsempfänger nur jeweils in einem beschränkten Wellenlängenbereich arbeiten, gibt es Streng genommen keine Gesamtstrahlungspyrometer, sondern nur Bandstrahlungspyrometer.Es hat sich jedoch als Vereinbarung durchgesetzt, auch dann von Gesamtstrahlungspyrometern zu sprechen, wenn mindestens 90% der bei einer bestimmten Temperatur möglichen Ausstrahlung ausgewertet werden.

\varepsilon

Für glühende Objekte gibt es ein visuelles Verfahren , bei dem das Glühlicht einer Wolframbandlampe (Glühlampe mit Wolfram-Band statt einer -Wendel) mit dem zu messenden Objekt zur Deckung gebracht wird. Man kann nun den Strom der Lampe so lange verändern, bis ihr Bild vor dem Messobjekt verschwindet — dann ist die Bandtemperatur gleich der des Messobjektes.Der Einstellknopf des Lampenstromes hat zum Ablesen der Temperatur eine Temperaturskala. Eine solche Messapparatur wird als Glühfadenpyrometer bezeichnet und gehört zur Gruppe der Vergleichspyrometer .

Welcher Bereich für die gewünschte Messung optima ist, hängt vom zu messenden Material und seiner Temperatur ab.

Für Temperaturen um die Raumtemperatur kommen Wellenlängen im Mittleren Infrarot (MIR) во Фраге. Es kommen thermische und pyroelektrische Sensoren zum Einsatz.

Temperaturen ab ок. Температура воздуха 50 ° C для инфракрасных фотодиодов лучше всего. Итак, eine Germanium-Fotodiode z. B. eine maximale Empfangswellenlänge von etwa 1,9 мкм. Das besser geeignete Material InGaAs kann je nach Zusammensetzung für maximale Empfangswellenlängen von 1,9 до 2,6 мкм gefertigt werden. [4]

Temperaturen ab etwa 700 ° C können mit Silicium-Fotodioden (maximale Empfangswellenlänge etwa 0,9 bis 1,1 мкм) или с Vergleichsverfahren im sichtbaren Spektralbereich gemessen werden.

Bei der maximalen Empfangswellenlänge von Silizium-Fotodioden (1,1 мкм) hat ein Körper mit einer Temperatur von 3000 K sein Strahlungsmaximum, mit Silicium Fotodioden können jedoch All Temperaturen oberhalb etwaerden C. Da der Emissionsgrad von Metallen mitinkender Wellenlänge ansteigt, ist es sinnvoll, Metalle und Metallschmelzen bei Temperaturen oberhalb von ca. 1000 ° C mit Silizium-Detektoren zu messen, die auf Wellenlängen zwischen 0,5 и 0,7 мкм abgefiltert sind.Generell ist der Temperaturmessbereich eines Pyrometers nach oben deutlich einfacher zu erweitern als nach unten, da mit steigender Temperatur die Strahlungsleistung bei allen Wellenlängen ansteigt.

Meistens wird der Empfangswellenlängenbereich von Hochtemperatur-Pyrometern durch den verwendeten Fotoempfänger und das vorgeschaltete optische Filter bestimmt.

Der Emissionsgrad des Materials muss für eine Messung mit Hilfe eines Pyrometers bekannt sein. Dieser hängt im Allgemeinen nicht nur vom Material des Messobjekts, sondern auch von der Wellenlänge (dem Empfangswellenlängenbereich des verwendeten Pyrometers) und daher der Temperatur des Objekts ab.

Während die meisten organischen Stoffe (Holz, Kunststoff, Papier, Lack) sowie Keramik sehr hohe Emissionsgrade (um 0,95) im mittleren (MIR) und fernen Infrarot (FIR) aufweisen, emitzentieren blankeren blankeren Wellenlängen (фиолетовый Ende des sichtbaren Spektralbereiches) und haben im nahen (NIR) und mittleren Infrarot (MIR) deutlich niedrigere und daher für die Messung ungünstigere Emissionsgrade (poliertes Gold im MIR-Bereich z. B. nur ca. 0,02).

Петля Ist ​​Metall z. B. eloxiert (Алюминий) или совершенно оксидирт, Hat es im MIR einen deutlichen höheren Emissionsgrad um 0,9. Auch bei uneierten Metallen (Farbe trustbig!) Ist dann der deutlich höhere Emissionsgrad des Lacks für die Temperaturmessung maßgeblich.

Пирометр haben daher oft eine Korrekturmöglichkeit für den Emissionsgrad, z. B. einen Drehknopf (Потенциометр) mit einer Skala von 0… 1. Ручной пирометр Einige («Инфраротермометр») haben auch einen zusätzlichen Messeingang für einen Kontakt-Temperatursensor (z.B. ein Thermoelement). Zur Kalibrierung des Pyrometers für ein unbekanntes Material, а также Zur Emissionsgradbestimmung, kann die Temperatur zunächst mit diesem zusätzlichen Sensor gemessen werden; die Einstellung für den Emissionsgrad am Pyrometer wird dann solange verstellt, bis die kontaktfreie Messung zu demselben Ergebnis wie diejenige mit dem Kontaktsensor führt.

Als Detektoren für Pyrometer werden thermische (z. B. Bolometer, pyroelektrische Sensoren или Thermosäulen aus Thermoelementen) или Photoelektrische Detektoren (ungekühlte oder gekühlte Fotodioden) или Bleisalz-verb.Der Nachteil der pyroelektrischen und der Bleisalzdetektoren besteht darin, dass sie nur im Wechsellicht stable arbeiten. Sie benötigen dazu einen optischen Modulator (Chopper-Rad), der zusammen mit seinem Motor ein Verschleißteil darstellt.

Die Linse oder das Fenster für Geräte im nahen Infrarotbereich besteht aus Glas oder Quarzglas, был nur für Strahlung im sichtbaren bis zum nahen Infrarot-Bereich bis ca. 4 мкм durchlässig ist. Im mittleren und fernen IR sind die Geräte fensterlos, oder die Linsen bzw.Fenster bestehen aus Kristallen wie Germanium, Silizium, CaF 2 , ZnS, ZnSe, KRS5 или даже полиэтилен (PE) или полипропилен (PP). Letztere erlauben das Erfassen von Wellenlängen bis etwa 20 мкм [5] .

  • sehr schnelle Messung (<1 с до 1 мкс, je nach Gerät) [6]
  • sehr lange, durchgängige Messbereiche möglich (z. B. 350… 3000 ° C)
  • kein Verschleiß
  • sehr geringe Temperatur-Beeinflussung des Messobjekts
  • kein Fehler durch mangelhaften Wärmekontakt
  • keine Mechanische Beschädigung von empfindlichen Objekten wie Folien oder Papier
  • kein Problem mit bewegten Messobjekten
  • Möglichkeit der Messung auch bei hohen Spannungen , elektromagnetischen Feldern или агрессивных материалов
  • Der Emissionsgrad muss für Material, Wellenlänge und Temperatur bekannt sein.Ein Quotientenpyrometer (s. O.) Kann hier Abhilfe schaffen, wenn das Verhältnis der Emissionsgrade der beiden Mess-Wellenlängen sich während des beobachtbaren thermischen Prozesses nicht ändert.
  • Insbesondere bei Metallen erschweren starke Emissionsgrad-Variationen eine präzise Messung (z. B. Kupfer: 0,012 (температура, 327 ° C), 0,78 (абсолютная оксидия, 25 ° C), 0,91 (абсолютная оксидия, 527 ° C) )).
  • Besonders in der Nähe des Messbereichsanfangs können Reflexionen von thermischen Strahlungsquellen oder Licht aus der Umgebung das Messergebnis beeinflussen.Abhilfe: Wahl eines Geräts mit einer höheren Mess-Wellenlänge.
  1. Johann Samuel Traugott Gehler (Memento des Originals vom 13. April 2014 im Internet Archive ) i Информация: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. @ 1 @ 2Vorlage: Webachiv / IABot / 141.14.236.86 Physicalisches Wörterbuch
  2. Уильям-Чендлер-Робертс-Остин. Encyclopaedia Britannica, abgerufen am 6. сентября 2018 г.
  3. ↑ Gruner: Grundlagen der berührungslosen Temperaturmessung «Strahlungsthermometrie». Абгеруфен утра 20. Апрель 2020.
  4. ↑ http://sales.hamamatsu.com/en/products/solid-state-division/ingaas-pin-photodiodes/long-wavelength-type.php InGaAs-Fotodioden von Hamamatsu
  5. ↑ Jörg Böttcher: Online-Kompendium Messtechnik und Sensorik: Pyrometer. Абгеруфен, 4 октября 2019 г.
  6. Sensortherm-Produktdatenblatt .Abgerufen am 18 сентября 2018 г.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *