Пусковой ток что такое: Пусковые токи асинхронного двигателя — откуда берутся и как их уменьшить – СамЭлектрик.ру

Содержание

Что такое пусковой ток аккумулятора?

Для запуска любого процесса потребуется приложить значительное усилие чтобы преодолеть инерцию покоя и силы трения и сопротивления. В значительной мере это относится к автомобильному двигателю.

Наряду с такими показателями как ёмкость и вольтаж , пусковой ток — важнейшая характеристика АКБ. На него стоит обратить особое внимание при покупке батареи. Некоторые автолюбители делают ошибку, выбирая аккумулятор с недостаточными характеристиками. От этого прибор быстро выходит из строя. Важно разобраться с этим параметром, и понимать суть этой характеристики.

Содержание статьи

Что это значит?

Для запуска автомобильного двигателя стартеру требуется приложить к коленвалу значительное усилие. Требуется не только сдвинуть все подвижные детали с места, но и сжать топливную смесь для обеспечения зажигания, а это от 9 до 16 атмосфер для различных двигателей. Для выполнения такой работы требуется большое количество энергии.

Пусковой ток аккумулятора — это значительное количество тока, которое необходимо стартеру для запуска двигателя.

 

Для запуска каждого конкретного автомобиля потребуется индивидуальное количество тока. Это зависит от ряда условий.

  • Тип двигателя: бензиновый/дизельный (Для запуска исправного бензинового мотора 1,5 л. пусковой ток — в среднем 180 Ампер. Пусковой ток для дизельного двигателя 1,5 л. — 300 Ампер.)
  • Температура окружающей среды и температура масла в двигателе (тут применим термин — ток холодной прокрутки)
  • Объём двигателя (чем больше мотор — тем труднее его запустить)
  • Степень сжатия двигателя

Стоит отметить что пуск двигателя происходит не моментально, в среднем стартеру потребуется от 0.3 до 1.5 секунд в нормальных условиях. За это время двигатель внутреннего сгорания достигает своих пусковых оборотов.

Пусковые обороты двигателя — это то количество оборотов коленчатого вала в минуту, при котором двигатель может продолжать работу самостоятельно. Сегодняшние бензиновые моторы способны запускаться и самостоятельно поддерживать свою работу уже при 40 — 70 оборотах в минуту, дизельные при 100 — 200 оборотах.

Современные автомобильные стартеры способны раскрутить двигатель до 200 оборотов в секунду всего за секунду.

Стартер раскручивает и запускает двигатель за доли секунды, при этом потребляя из аккумулятора ток в сотни ампер. Аккумулятор в этот момент работает на максимум, значительно разряжаясь, выдавая необходимый пусковой ток и неизбежно проседая по показателю напряжения.

Для лучшего понимания происходящего с аккумулятором разберём осциллограмму напряжения и тока снятую с контактов стартера.

Здесь показан запуск бензинового двигателя с объёмом в 1.5 литра, используя АКБ емкостью 60 Ач с пусковым током EN 500 А. На запуск мотора потребовалось 1.2 секунды времени, которое отмечено шкалой внизу изображения, за это время скорость коленвала поднялась до 200 оборотов в минуту.

  • Красным цветом на графике показано изменение силы тока (Ампер) со шкалой слева.
  • Синим цветом раскрашен график напряжения (Вольт) шкала справа.

Прекрасно видно что в первые миллисекунды запуска потребляемый ток молниеносно поднялся до показателя в 350 ампер, в то же время произошла просадка напряжения до 8.5 вольт. Но уже через 1 десятую долю секунды потребляемый ток снизился больше чем в 2 раза и составил 125 ампер, а напряжение поднялось выше 10 вольт.

Оставшееся время (чуть более секунды) стартер потреблял около 75 ампер, со скачками при зажигании в каждом из цилиндров. Вольтаж ровно повышался до 12 вольт по окончании запуска, и после повысился до 14 вольт — пошёл процесс зарядки аккумулятора.

Становится понятно что каждый пуск двигателя становится для аккумулятора небольшой проверкой напрочность.

Важно! Если аккумулятор не имеет запаса мощности (ток холодной прокрутки + необходимая энергия для пуска), то при пуске мотора напряжение  в сети опустится ниже 7-8 Вольт. В этом случае возможны нарушения искрообразования или перезагрузка ЭБУ, вследствие чего пуск не состоится.

Благодаря тому, что время затрачиваемое на запуск двигателя достаточно мало (около 30 сек.), средних показателей аккумулятора хватает, чтобы автомобиль заводился с первой попытки.

Методы проверки

Процедура проверки создана так, чтобы воспроизвести условия при зимнем запуске автомобиля. Это не самый простой способ оценить пусковой ток. Но он считается самым надёжным.

Стандарты определяются следующим образом:

  • Аккумулятор помещают в рефрижератор и снижают температуру до -18оС.
  • После этого на прибор направляют разрядный ток, который равен номинальному пусковому току. Допустим, у прибора пусковой ток равен 300А, значит, разрядный ток должен быть тоже 300А.
  • Чтобы прибор прошёл испытание, его напряжение не должно падать ниже установленного стандарта.

Но для начала надо сказать пару слов о мировых стандартах, которые напрямую влияют на конечный результат. А всё дело в том, что в разных странах пусковой ток имеет свои нормы.

  • Евросоюз (Europa Norm) – после разрядного тока в течение 10 сек. заряд не должен падать ниже 7,5А.
  • Германия (DIN) – аккумуляторная батарея через 50 сек. не должна разряжаться ниже 9В.
  • США (SAE) – после того, как на прибор был направлен разрядный ток, через 50 сек. напряжение не должно падать ниже 7,2В.

Важно! Российский ГОСТ имеет точно такие же стандарты, как в Германии.

Существуют ещё так называемые пусковые тестеры. Они индуцируют мощный импульс, который соответствует номинальному пусковому току. С помощью закона Ома, прибор вычисляет сопротивление аккумулятора, а после этого считывает данные о пусковом токе. Таким способом проверить данные можно гораздо быстрее. Но результат может быть не совсем точным.

Какой должен быть ток холодной прокрутки?

Пусковой ток иногда ещё называют током холодной прокрутки. Но некоторые автолюбители задают вопрос: «Каким он должен быть». При покупке накопительной батареи этот параметр играет немаловажную роль. Хотя всё на самом деле очень просто. Например, чтобы завести двигатель, необходимо 500А. Поэтому выбираем аккумулятор на 100А больше.

Если использовать устройство с точно такими же показателями или меньшей силой тока, тогда прибор очень быстро выйдет из строя.

ВНИМАНИЕ! Выбирая аккумулятор, следует помнить, что во время запуска двигателя, стартер ещё 30 – 40 сек. крутиться. Если заводить машину дольше, тогда есть шанс, что батарея просто перегреется. Ещё необходимо обращать внимание на то, какой тип автомобиля (легковая машина, газель, КАМАЗ, длинномер и т.д.).

Ещё одну немаловажную роль играет тип двигателя. Дизельные моторы имеют предпусковые подогреватели. Поэтому ток холодной прокрутки должен быть не меньше 350А.

Бензиновые моторы не нуждаются в больших показателях тока холодной прокрутки. Для них достаточно 100А. А для холодных регионов нудно брать приборы как минимум с 225А.

Таблица оптимальных показателей

Пусковой ток и объём разных аккумуляторных батарей.

Наименование аккумулятора (в скобках указан стандарт)Пусковой ток (А)Ёмкость (Ач)
Varta 6СТ-60 BLUE dynamic (D47) (DIN)54060
Forse 6СТ-60 Аз (En)60060
BOSCH 6CT-60 S4 SILVER (S40 060) (EN / DIN)540 / 32460
Varta 6СТ-60 Silver Dynamic AGM (D52) (EN)68060
Bosch 6CT-95 S6 AGM HighTec (S60 130) (EN)85095
AGM Exide ES2400 (EN)210630
Cartechnic 6Ст-225 АзЕ CART7250121151150225

Ток холодной прокрутки — весьма важный показатель, особенно для погодных условий нашей страны. В южных регионах аккумулятор чувствует себя достаточно комфортно. Поэтому на параметры пускового тока даже не смотрят.

Другое дело северные районы. Жители этих регионов должны обращать внимание на этот показатель. Так как холодные условия превращают масло в густую массу, которая затрудняет запуск двигателя.

Важно! В городах, которые расположены ближе к Северному полюсу (Сургут, Мурманск, Ямал и т. д.) в очень холодные времена водители вообще не выключают двигатели. Ведь если оставить на ночь машину с выключенным мотором, утром её просто будет невозможно завести.

Двигатели в тёплых регионах при температуре от +1 до +5оС спокойно запускаются при 200 – 220 Ам. Но, когда температура падает до -10 или -15оС, здесь уже требуется мощности на 30% больше. Т.е. выбирать батарею нужно на 260 или 270 Ам. А когда она падает до -30 или -40оС, сила электрического тока возрастает ещё больше.

На что влияют остальные характеристики?

Кроме пускового тока, на коробке есть множество характеристик. И неопытный автолюбитель может просто растеряться и выбрать накопительную батарею, которая быстро выйдет из строя.

Поэтому для новичков следует обращать внимание на следующие параметры.

Ёмкость. Один из основных параметров аккумулятора. Чем выше этот показатель, тем больше энергии он сможет накопить. Измеряется ёмкость в Ач (Амперы, умноженные на часы). Но следует учитывать тот факт, что большой объём аккумулятора – это не значит, что он лучше. Все накопительные приборы рано или поздно выходят из строя. Поэтому, потраченные средства на очень дорогой аккумулятор иногда себя не оправдывают. Для этого нужно исходить из объёма двигателя (т.е. размера машины).

 

Как рассчитать ёмкость аккумулятора по объёму двигателя?

Объём двигателяЁмкость аккумулятора
1 – 1,6л55Ач
1,3 – 1,9л60АЧ
1,4 – 2,3л66Ач
1,9 – 4,5л.90Ач
7,5 – 17л200Ач
7,2 – 12л190Ач
3,8 – 10,9л140Ач

Есть ещё одна деталь. Буква «С» несёт дополнительную информацию. А именно – какая ёмкость имеет батарея в определённый промежуток времени.

Важно! Чем дольше используется прибор, тем меньше он может накопить энергии. Поэтому следует иметь запасной аккумулятор. И если энергии не хватит, чтобы запустить двигатель, заменить его.

Напряжение батареи – это параметр, который определяет, насколько заряжен прибор и как быстро он будет изнашиваться. Измеряется в вольтах (В). Но в современных машинах прибор для измерения этого параметра отсутствует. Поэтому рекомендуется приобрести мультиметр. Чтобы определить напряжение, необходимо отключить аккумулятор от зарядного устройства и потратить несколько часов на эту процедуру.

Глубина разряда – это допустимая норма разрядки батареи. Измеряется в процентах. Если разряжать батарею на 100% несколько раз подряд до показания напряжения 9В – любой, даже самый дорогой аккумулятор выводиться из строя очень быстро.

Поэтому, следует обращать внимание на этот параметр. Правда, все накопительные приборы имеют рекомендуемую глубину разряда и допустимую глубину разряда. Допустимая норма указывается в инструкции по эксплуатации. Но лучше не рисковать.

Срок эксплуатации прибора немаловажный показатель. Например, свинцово-кислотные аккумуляторы подходят для самых разных режимов работы, но их служба намного меньше, чем другие батареи. Но в инструкции указываются средние показатели сроков службы. Т.е. – если автолюбитель не перенапрягает прибор, он послужит столько, сколько указано на коробке.

Диапазон рабочей температуры основан на химических реакциях, которые происходят внутри прибора. Исключением считается литий-ионные батареи, где в качестве накопительного элемента используется минерал. Следовательно, температура окружающей среды очень сильно влияет на работу аккумулятора.

Если на пусковой ток влияет низкая температура, то в случае с «диапазоном рабочей температуры» происходит обратный процесс. И чем выше температура окружающей среды, тем ниже срок эксплуатации прибора. Но низкие показатели уменьшают ёмкость батареи.

Заключение

Параметр тока холодной прокрутки очень важен для запуска двигателя. И чем холоднее регион, тем выше должно быть его значение. Покупая аккумулятор, автолюбитель должен рассмотреть не только этот параметр. Всё зависит от того, в каких условиях проходит эксплуатация машины. Если это жаркие районы, следует обращать внимание на «саморазряд батареи» и «диапазон рабочей температуры». Но если машина работает в холодных условиях, необходимо выбирать батарею с большими значениями пускового тока.

Что такое пусковой ток саморегулирующегося нагревательного кабеля


Пусковой, иначе стартовый, ток — это ток, возникающий в цепи в момент включения питания. Величина его может в несколько раз превышать значение номинального тока кабеля. Это важный параметр, который необходимо учитывать при расчете максимальной длины отрезков саморегулирующегося кабеля.

От чего зависит пусковой ток


На величину пускового тока влияют как параметры самого кабеля, так и окружающие условия.

  • Температура окружающей среды при включении — чем она ниже, тем больше пусковой ток и стартовая мощность.
  • Свойства саморегулируемого кабеля — проводящая матрица с положительным температурным коэффициентом (PTC) изменяет свое сопротивление в зависимости от окружающей температуры. В «холодном» состоянии сопротивление кабеля мало. Поэтому в момент включения ток велик. После подачи питания кабель разогревается, его сопротивление растет, ток в цепи уменьшается. 
  • Длина греющего кабеля — чем больше длина секции, тем больше пусковой ток. Саморегулируемый греющий кабель условно можно представить в виде множества резисторов, подключенных параллельно к одному источнику питания. Чем больше длина линии, тем меньше общее сопротивление цепи, тем больше пусковой ток. 
  • Мощность греющего кабеля — чем больше удельная (погонная) мощность (Вт/м), тем больше стартовый ток.


image001.png


Саморегулирующийся нагревательный кабель может иметь пусковой ток в 1,5–5 и даже более раз рабочего значения. Это необходимо учитывать на этапе расчета системы особенно при применении мощных кабелей большой длины.

Проблемы из-за неверного расчета пускового тока


Неправильный расчет и выбор оборудования приводят к таким последствиям: 

  • Срабатывания автоматов и других устройств защиты при включении обогревательной системы из холодного состояния. Эта проблема может быть не выявлена при тестировании системы, если оно проводилось до наступления холодов, и проявится только в холодное время года. При расчете системы рекомендуется выбирать защитный автомат с запасом по току.
  • Перегрев силового кабеля — большая продолжительность процесса включения с высоким значением пускового тока нагревает его жилы, это может привести к КЗ и аварийной ситуации.

Способы уменьшения пускового тока


Большой пусковой ток нежелателен для питающей сети, поскольку приходится устанавливать автоматы на больший номинальный ток и подбирать силовой кабель большего сечения. Уменьшить величину пускового тока можно следующими способами:

  1. Последовательное подключение нагревательных секций к сети питания с помощью реле задержки времени. Этот способ применим в системе из нескольких нагревательных секций. Реле позволяет включать секции с некоторым сдвигом во времени.
  2. Устройство плавного пуска, которое на протяжении всего «холодного» запуска поддерживает величину тока в системе на уровне, не превышающем номинальное значение. 



Указанные меры позволяют использовать силовые и дифференциальные автоматы, которые рассчитаны на номинальный ток секции, и не придется подбирать силовой кабель с увеличенным сечением.


Оставить заявку на расчет

Что такое пусковой ток аккумулятора?

Пусковыми токами аккумулятора называются специфические уровни напряжения тока, которые способен выдать аккумулятор при низкой температуре (как правило, за основу измерения берётся -18°С), и которые должны быть достаточными для того, чтобы запустить двигатель через стартер. Именно величина тока определяет, насколько легко сможет запуститься аккумулятор, например, зимой на морозе, и сможет ли вообще. Пусковые токи у разных аккумуляторных батарей существенно отличаются, их показатели производители указывают, как правило, на коробке батареи сверху или на боковой панели, рядом с указателем ёмкости и другими данными.

Как определить пусковой ток аккумулятора

Как определить пусковой ток аккумулятора

Проблема в том, что величина пускового тока измеряется несколько разными способами в разных странах, поэтому показатели нужно проверять по специальной таблице соотношения различных величин пусковых токов по системам измерения разных стран. Величина пускового тока тем более важна, что от неё зависит также, с какого типа двигателям (например, бензиновыми или дизельными) его можно использовать. Для некоторых типов двигателей нужны намного более мощные батареи с более сильным показателем пускового тока.

Напряжение на аккумуляторе

Напряжение на аккумуляторе

При запуске двигателя, который успел уже остыть или простоял на морозе всю ночь и при запуске разогретого двигателя нормальное напряжение на аккумуляторе, который полностью заряжен, будет оставаться одним и тем же, и составляет порядка 12,5 вольта. Зимой перед запуском двигателя желательно машину каким-то образом согреть. Если она находится в гараже, то можно просто обычной батарее прогреть район пространства под капотом и возле него. Только для этого нельзя использовать открытый огонь — только поток тёплого воздуха. Нужно знать, что во время запуска в двигателе со отжатым полностью сцеплением сила тока будет достигать примерно 170 А – это показывает, насколько сильный ток генерирует аккумулятор, и почему он разряжается. Отжимать сцепление во время проворачивания ключа в замке нужно обязательно, это выведет из игры КПП от работы стартера, что не заставляет на старте двигателю крутить ещё и шестерни КПП.

Величина пускового тока аккумулятора

Какой бы ни была величина пускового тока, перед тем, как стартовать, обязательно нужно полностью выключить все приборы освещения, бытовые электроприборы и всё, что требует дополнительного питания в автомобиле. В случае, если не удаётся запустить машину, или если стартер не поворачивается больше, чем на половину оборота, значит, аккумулятор полностью сел.

23.03.2016

ПУСКОВОЙ ТОК — это… Что такое ПУСКОВОЙ ТОК?

  • пусковой ток — EN inrush current transient current associated with energizing of transformers, cables, reactors, etc [IEV number 448 11 30] inrush current Iin current occurring during the transient period from the moment of switching to the steady state… …   Справочник технического переводчика

  • пусковой ток — 3.29 пусковой ток (start up current): Значение тока электронагревателя в момент его включения. Источник …   Словарь-справочник терминов нормативно-технической документации

  • пусковой ток — ток, потребляемый из сети электродвигателем при его пуске. Пусковой ток может в несколько раз превосходить номинальный ток двигателя, поэтому пусковой ток часто ограничивают так называемыми пусковыми резисторами или пусковыми реле. * * * ПУСКОВОЙ …   Энциклопедический словарь

  • пусковой ток — paleidimo srovė statusas T sritis automatika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m rus. пусковой ток, m; ток при пуске, m pranc. courant de démarrage, m …   Automatikos terminų žodynas

  • пусковой ток — paleidimo srovė statusas T sritis fizika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m; Einschaltstrom, m rus. пусковой ток, m; ток включения, m pranc. courant de démarrage, m; courant initial, m …   Fizikos terminų žodynas

  • Пусковой ток —         ток, потребляемый из сети электродвигателем при его пуске. П. т. может во много раз превосходить номинальный ток двигателя, поэтому возникает необходимость его ограничения посредством пускового сопротивления (См. Пусковое сопротивление).… …   Большая советская энциклопедия

  • ПУСКОВОЙ ТОК — ток, потребляемый электродвигателем из сети в момент его пуска. Сила П. т. может во много раз превосходить силу номин. тока двигателя. Для ограничения силы П. т. при пуске асинхр. двигателей с фазным ротором в цепь ротора последовательно включают …   Большой энциклопедический политехнический словарь

  • пусковой ток — start up current Значение тока электронагревателя в момент его включения …   Электротехнический словарь

  • пусковой ток накала генераторной (модуляторной, регулирующей) лампы — пусковой ток накала Максимальное мгновенное значение тока накала, возникающего при подаче напряжения накала на катод генераторной (модуляторной, регулирующей) лампы при заданных условиях. [ГОСТ 20412 75] Тематики электровакуумные приборы Синонимы …   Справочник технического переводчика

  • пусковой ток трансформатора — проверяют, чтобы указанные в маркировке номинальные характеристики составляющих элементов соответствовали условиям работы трансформатора, включая пусковой ток. [ГОСТ 30030 93 (МЭК 742 83)] Тематики трансформатор EN inrush current of a transfor …   Справочник технического переводчика

  • пусковой ток — это… Что такое пусковой ток?

  • ПУСКОВОЙ ТОК — ток, потребляемый из сети электродвигателем при его пуске. Пусковой ток может в несколько раз превосходить номинальный ток двигателя, поэтому пусковой ток часто ограничивают т. н. пусковыми резисторами …   Большой Энциклопедический словарь

  • пусковой ток — EN inrush current transient current associated with energizing of transformers, cables, reactors, etc [IEV number 448 11 30] inrush current Iin current occurring during the transient period from the moment of switching to the steady state… …   Справочник технического переводчика

  • пусковой ток — 3.29 пусковой ток (start up current): Значение тока электронагревателя в момент его включения. Источник …   Словарь-справочник терминов нормативно-технической документации

  • пусковой ток — paleidimo srovė statusas T sritis automatika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m rus. пусковой ток, m; ток при пуске, m pranc. courant de démarrage, m …   Automatikos terminų žodynas

  • пусковой ток — paleidimo srovė statusas T sritis fizika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m; Einschaltstrom, m rus. пусковой ток, m; ток включения, m pranc. courant de démarrage, m; courant initial, m …   Fizikos terminų žodynas

  • Пусковой ток —         ток, потребляемый из сети электродвигателем при его пуске. П. т. может во много раз превосходить номинальный ток двигателя, поэтому возникает необходимость его ограничения посредством пускового сопротивления (См. Пусковое сопротивление).… …   Большая советская энциклопедия

  • ПУСКОВОЙ ТОК — ток, потребляемый электродвигателем из сети в момент его пуска. Сила П. т. может во много раз превосходить силу номин. тока двигателя. Для ограничения силы П. т. при пуске асинхр. двигателей с фазным ротором в цепь ротора последовательно включают …   Большой энциклопедический политехнический словарь

  • пусковой ток — start up current Значение тока электронагревателя в момент его включения …   Электротехнический словарь

  • пусковой ток накала генераторной (модуляторной, регулирующей) лампы — пусковой ток накала Максимальное мгновенное значение тока накала, возникающего при подаче напряжения накала на катод генераторной (модуляторной, регулирующей) лампы при заданных условиях. [ГОСТ 20412 75] Тематики электровакуумные приборы Синонимы …   Справочник технического переводчика

  • пусковой ток трансформатора — проверяют, чтобы указанные в маркировке номинальные характеристики составляющих элементов соответствовали условиям работы трансформатора, включая пусковой ток. [ГОСТ 30030 93 (МЭК 742 83)] Тематики трансформатор EN inrush current of a transfor …   Справочник технического переводчика

  • ПУСКОВОЙ ТОК — это… Что такое ПУСКОВОЙ ТОК?

  • ПУСКОВОЙ ТОК — ток, потребляемый из сети электродвигателем при его пуске. Пусковой ток может в несколько раз превосходить номинальный ток двигателя, поэтому пусковой ток часто ограничивают т. н. пусковыми резисторами …   Большой Энциклопедический словарь

  • пусковой ток — EN inrush current transient current associated with energizing of transformers, cables, reactors, etc [IEV number 448 11 30] inrush current Iin current occurring during the transient period from the moment of switching to the steady state… …   Справочник технического переводчика

  • пусковой ток — 3.29 пусковой ток (start up current): Значение тока электронагревателя в момент его включения. Источник …   Словарь-справочник терминов нормативно-технической документации

  • пусковой ток — ток, потребляемый из сети электродвигателем при его пуске. Пусковой ток может в несколько раз превосходить номинальный ток двигателя, поэтому пусковой ток часто ограничивают так называемыми пусковыми резисторами или пусковыми реле. * * * ПУСКОВОЙ …   Энциклопедический словарь

  • пусковой ток — paleidimo srovė statusas T sritis automatika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m rus. пусковой ток, m; ток при пуске, m pranc. courant de démarrage, m …   Automatikos terminų žodynas

  • пусковой ток — paleidimo srovė statusas T sritis fizika atitikmenys: angl. starting current vok. Anlaßstrom, m; Anlaufstrom, m; Einschaltstrom, m rus. пусковой ток, m; ток включения, m pranc. courant de démarrage, m; courant initial, m …   Fizikos terminų žodynas

  • Пусковой ток —         ток, потребляемый из сети электродвигателем при его пуске. П. т. может во много раз превосходить номинальный ток двигателя, поэтому возникает необходимость его ограничения посредством пускового сопротивления (См. Пусковое сопротивление).… …   Большая советская энциклопедия

  • пусковой ток — start up current Значение тока электронагревателя в момент его включения …   Электротехнический словарь

  • пусковой ток накала генераторной (модуляторной, регулирующей) лампы — пусковой ток накала Максимальное мгновенное значение тока накала, возникающего при подаче напряжения накала на катод генераторной (модуляторной, регулирующей) лампы при заданных условиях. [ГОСТ 20412 75] Тематики электровакуумные приборы Синонимы …   Справочник технического переводчика

  • пусковой ток трансформатора — проверяют, чтобы указанные в маркировке номинальные характеристики составляющих элементов соответствовали условиям работы трансформатора, включая пусковой ток. [ГОСТ 30030 93 (МЭК 742 83)] Тематики трансформатор EN inrush current of a transfor …   Справочник технического переводчика

  • Электрическое распределительное устройство и защита Вопросы для интервью Инструментальные средства

    Каковы основные функции распределительного устройства?

    1. Для запуска и остановки двигателя и, в то же время, ограничения пускового тока, если это необходимо.
    2. Обеспечивает адекватную защиту двигателя в любых условиях.
    3. Для изменения скорости при необходимости.
    4. Для обеспечения возможности торможения двигателя при необходимости.
    5. Для изменения направления вращения при необходимости.

    Защита двигателя должна быть автоматической, но другие операции могут выполняться под контролем оператора или могут быть частично или полностью автоматическими.

    Какие устройства требуются для адекватной защиты двигателя?

    1. Расцепитель минимального напряжения для предотвращения автоматического перезапуска после остановки из-за падения напряжения или отказа источника питания, когда неожиданный перезапуск двигателя может привести к травме оператора.
    2. Реле перегрузки для защиты от чрезмерного тока в обмотках двигателя — эл.грамм. в случае перегрузки или выхода из строя мотора.
    3. Замыкание на землю.
    4. Однофазная защита.

    Какие меры должны быть предусмотрены для условий короткого замыкания в цепях двигателя?

    Так как реле перегрузки не предназначены для срабатывания и отключения цепи в случае короткого замыкания. Должен быть предусмотрен автоматический выключатель или предохранитель с достаточной отключающей способностью, чтобы справиться с любым возможным коротким замыканием, которое может произойти.

    Какие обычно используются реле перегрузки в приводах управления двигателями?

    В пускателях с малыми контакторами обычно используются тепловые реле типа «припой» или биметаллические.С крупногабаритными контакторами или масляными выключателями, магнитные реле соленоидного типа с торпедами. Любой тип реле перегрузки может использоваться в пределах промежуточных размеров.

    Как работают тепловые реле?

    Биметаллическое тепловое реле состоит из небольшой биметаллической полосы, которая нагревается элементом, последовательно соединенным с источником питания. Когда ток поднимается выше заданного значения, движение ленты освобождает защелку, которая размыкает контакты отключения.

    В последнее время используются более современные электронные реле, имитирующие тепловую перегрузку.Многие из этих реле также имеют память, т.е. моделируют кривую повышения температуры / охлаждения обмотки.

    Как работает магнитное реле перегрузки?

    Соленоид, подключенный последовательно к источнику питания, содержит поршень, движение которого демпфируется демпфером. Когда безопасный ток превышен, соленоид подтягивает плунжер вверх — отключая питание. Демпфирование, обеспечиваемое приборной панелью, предотвращает несанкционированное отключение при кратковременных перегрузках.

    Сколько реле перегрузки требуется в ПРА?

    В трехфазных источниках питания, где нейтральная точка системы соединена с землей, как это обычно бывает, для полной защиты необходимы три реле перегрузки (по одному в каждой линии).

    Для 2-фазных, 3-проводных и 4-проводных источников питания требуются два реле перегрузки, по одному на каждую фазную линию, ни одно из которых не подключено к нейтрали или заземляющему проводу.

    Для однофазных двигателей одно реле перегрузки в любом проводе, кроме заземленного или нейтрального.

    Что происходит, когда одна из трех линий питания трехфазного асинхронного двигателя размыкается?

    Двигатель, если он уже работает, будет продолжать работать как однофазный двигатель от оставшейся однофазной сети.Состояние называется однофазным. Если двигатель нагружен более чем примерно на 30% от полной нагрузки, токи в обмотках двигателя становятся чрезмерными и происходит перегрев.

    Если одна линия разорвана, двигатель не запустится, а из-за сильного тока покоя возможно перегорание, если двигатель не будет быстро отключен.

    Какие токи протекают в однофазном двигателе, соединенном треугольником?

    Предполагая, что линия питания L1 имеет разомкнутую цепь, как показано, типичные линейные и фазные токи, выраженные в процентах от нормального трехфазного тока полной нагрузки, при различных нагрузках будут: —

     single-phasing delta-connected motor

     single-phasing delta-connected motor

    Таким образом, фаза W подключенные через две рабочие линии, пропускают почти в три раза больше нормального тока в однофазных условиях при полной нагрузке, в то время как фазы U и V, соединенные последовательно, несут ток, превышающий ток полной нагрузки.

    Какие токи протекают в однофазном двигателе, соединенном звездой?

    Если предположить, что линия L1 разомкнута, как показано, ток, протекающий при полной нагрузке в линиях L2 и L3 и через две последовательно включенные фазы, будет порядка 250 процентов от нормального тока полной нагрузки, 155 процентов. на 3/4 нагрузки и 98 процентов на 1/2 нагрузки.

    single-phasing star-connected motor?

    single-phasing star-connected motor?

    Срабатывают ли нормальные реле перегрузки при однофазном режиме?

    При правильной настройке нормальные перегрузки сработают, когда двигатель полностью загружен из-за повышения тока, проходящего через замкнутые линии питания.При частичной нагрузке двигателя, подключенного по схеме треугольника, увеличения линейного тока может быть недостаточно для срабатывания отключения по перегрузке, и одна фаза может чрезмерно перегреться.

    Какая специальная защита может быть обеспечена от однофазного тока?

    Одним из методов является включение комбинированного реле перегрузки и однофазного реле в ПРА. Типичное реле этого типа включает три реле перегрузки с расцепляющими контактами, расположенными таким образом, что оно срабатывает, если смещение одного элемента перегрузки отличается от смещения других.

    Этот тип реле срабатывает, если однофазное переключение происходит при полной или близкой к ней нагрузке с той же временной задержкой, что и при перегрузке, но при малых нагрузках время задержки для однофазной защиты больше. Другое устройство — реле обрыва фазы в пускорегулирующем аппарате. Его принцип основан на том факте, что токи в линиях питания или напряжения между ними на клеммах двигателя несимметричны, когда двигатель является однофазным.

    Реле обрыва фазы может быть реле тока или напряжения, которое отключает линейный выключатель, когда одна из линий питания становится разомкнутой.

    Каковы альтернативы использованию расцепителей перегрузки?

    В двигатель может быть встроена прямая защита от перегрева или выгорания обмоток двигателя. Встроенные устройства защиты могут иметь форму термостатов или термисторов, встроенных в концевые обмотки статора во время сборки двигателя. Эти устройства чувствительны к температуре обмоток и расположены в соответствующей цепи, чтобы приводить к отключению двигателя, если обмотки чрезмерно нагреваются.

    Как устроена встроенная защита от тепловой перегрузки?

    На малых двигателях низковольтных двигателях с плоской обмоткой эти детекторы встроены в выступ обмотки. В двигателях среднего напряжения они размещаются между нижней и верхней обмотками в пазу сердечника.

    Как работают встроенные устройства защиты от тепловой перегрузки?

    Термисторы — это очень маленькие полупроводниковые устройства, сопротивление которых быстро меняется в зависимости от температуры. Три термистора вставлены в концевые обмотки статора, по одному в каждой фазе, и включены последовательно.Две клеммы термистора на двигателе подключены к блоку управления электронным усилителем в стартере, через который приводится в действие цепь отключения стартера. Реакция термисторов на изменение температуры чрезвычайно быстрая, что позволяет использовать этот тип защиты при любых условиях перегрузки двигателя.

    Терморезисторы сопротивления (RTD)

    Это сопротивление, которое линейно увеличивается с ростом температуры. Чаще всего в двигателях используется клин из эпоксидного стекла, который можно вставить между верхней и нижней катушками.Сопротивление измеряется электронным блоком управления усилителем, которое преобразуется в температуру.

    Это устройство имеет регулируемые настройки, позволяющие подавать аварийный сигнал и отключать контакты, которые затем используются в цепи пускателя двигателя.

    Термопары

    Термопара — это два разнородных металла, которые соединены вместе и при изменении температуры создают гальваническое действие. Это выдает сигнал в милливольте, который затем измеряется блоком управления электронным усилителем, преобразуя результат измерения в температуру.

    Когда используется прямой пуск для трехфазных двигателей с короткозамкнутым ротором?

    Обычно для малых машин низкого напряжения; для более крупных двигателей часто необходимо использовать другие методы пуска, чтобы избежать чрезмерных пусковых токов. Двигатели высокого напряжения обычно запускаются прямым пуском. (поскольку токи низкие)

    Какие соединения для прямого пуска?

    Схема подключения состоит из трех вводов линии и трех выводов двигателя.Контакторные пускатели прямого включения спроектированы по показанной базовой схеме. В стартер может быть включен изолирующий выключатель. Если требуется реверсирование, требуются два контактора, по одному на каждое вращение, которые блокируются, так что только один может замыкаться одновременно.

    connections for direct-on-line starters

    connections for direct-on-line starters.

    Зависимость переменного тока (AC) от постоянного (DC)

    Пораженный громом!

    Откуда австралийская рок-группа AC / DC получила свое название? Ну, конечно же, переменный и постоянный ток! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (переменного тока), напротив, периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

    Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключено к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также имеет некоторые полезные свойства, такие как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.

    Что вы узнаете

    • История создания переменного и постоянного тока
    • Различные способы генерации переменного и постоянного тока
    • Некоторые примеры приложений переменного и постоянного тока

    Рекомендуемая литература

    и nbsp

    и nbsp

    Переменный ток (AC)

    Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током.AC используется для подачи питания в дома, офисные здания и т. Д.

    Генератор переменного тока

    переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

    Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются.Вот короткая анимация, демонстрирующая этот принцип:

    (Видео предоставлено: Хуррам Танвир)

    Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

    Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток). Обратите внимание, что зажатый участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

    Осциллограммы

    AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенный тип переменного тока — синусоидальный. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

    Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

    Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

    Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, например, усилителей.

    Описание синусоидальной волны

    Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

    Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

    V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

    V P — это амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

    Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

    — это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

    f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.

    t — наша независимая переменная: время (измеряется в секундах).Со временем меняется и форма нашего сигнала.

    φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

    Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

    Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

    Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

    ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Когда вы хотите рассчитать электрическую мощность, часто бывает полезно использовать значение RMS для переменного тока. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

    Приложения

    В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

    AC также может питать электродвигатели. Двигатели и генераторы представляют собой одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

    Постоянный ток (DC)

    Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

    Генерация постоянного тока

    DC может быть сгенерирован несколькими способами:

    • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
    • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
    • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

    Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

    Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар пуст, вода больше не течет по трубам.

    Описание DC

    DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

    Если мы построим график с течением времени, мы увидим постоянное напряжение:

    Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. На самом деле батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

    Приложения

    Почти все проекты электроники и запчасти, выставленные на продажу на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует кабель USB для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

    • Сотовые телефоны
    • D&D Dice Gauntlet на основе LilyPad
    • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который конвертируется в постоянный ток)
    • Фонари
    • Гибридные и электромобили

    Битва течений

    Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

    В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссии в следующем году. .

    AC против

    постоянного тока

    Томас Эдисон (Изображение любезно предоставлено biography.com)

    В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели можно подключить между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

    Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

    Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

    Кампания Эдисона по выявлению мазков

    В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток опаснее постоянного тока. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

    Возвышение AC

    В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены выставкой. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

    Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

    Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 вольт при 50 Гц, стандартом в Северной Америке станет 120 вольт при 60 Гц.

    Высоковольтный постоянный ток (HVDC)

    Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.

    С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

    В линиях

    HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

    В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.

    Ресурсы и движение вперед

    Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. С другой стороны, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С таким пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

    Взгляните на следующие руководства, когда будете готовы погрузиться глубже в мир электроники:

    и nbsp

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *