Рабочий процесс четырехтактного двигателя: Рабочие циклы четырехтактных двигателей | Двигатель автомобиля

Содержание

Рабочие циклы четырехтактных двигателей | Двигатель автомобиля

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рабочий цикл одноцилиндрового четырехтактного дизеля

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

  • на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
  • работа на более дешевом топливе, которое менее пожароопасно

Недостатки дизеля:

  • более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
  • пуск его затруднен, особенно в зимнее время

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Четырехтактный двигатель: принцип работы, основные отличия

Как работает двигательЧетырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактный двигательДвухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

История

Развитие двигателей внутреннего сгоранияПриблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.

Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.

Особенности работы 4-х тактного двигателя

4-х тактный двигательВ двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.

Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.

Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.

Конструкция агрегата

Детали двигателяРаспредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.

Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще, клапаны не могут закрыть полностью каналы выпуска и впуска.

У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

Этапы работы :

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель автомобиляДвигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

Рабочий цикл четырехтактного двигателя — особенности, схема и описание

Автолюбители должны хотя бы в общих чертах знать, как устроен и работает двигатель. В большинстве автомобилей установлен четырехтактный четырехцилиндровый мотор. Давайте рассмотрим рабочий цикл четырехтактного двигателя. Далеко не все знают, какие процессы происходят, когда автомобиль находится в движении.

Общий принцип действия

Двигатель работает следующим образом. В камеру сгорания попадает топливная смесь, далее она сжимается под воздействием поршня. После этого смесь воспламеняется. Это приводит к расширению продуктов сгорания, они давят на поршень и выходят из цилиндра.

поршневой двигатель в автомобилях

В двухтактных двигателях один оборот коленчатого вала совершается в два такта. Четырехтактный поршневой двигатель совершает рабочий цикл за два оборота коленчатого вала. Двигатели оснащаются ГРМ. Что это за механизм? Это элемент, который позволяет впускать топливную смесь в камеры и выпускать оттуда продукты сгорания. Обмен газов осуществляется в момент отдельного оборота коленчатого вала. Газообмен происходит за счет движения поршня.

История

Первое устройство, напоминающее четырехтактный мотор, изобрели Феличче Матоци и Евгений Барсанти. Но данное изобретение невероятным образом утеряли. Лишь в 1861 году похожий агрегат запатентовали.

четырехтактный двигатель такты рабочего процесса

А первый пригодный к использованию двигатель разработал инженер из Германии Николаус Отто. Мотор получил имя изобретателя, а рабочий цикл четырехтактного двигателя также носит имя этого инженера.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Работа двигателя

Вне зависимости от типа мотора, принцип его работы аналогичен. Сегодня существуют карбюраторные моторы, дизельные, инжекторные. Во всех моделях происходит один и тот же рабочий цикл четырехтактного двигателя. Давайте подробно рассмотрим, какие же процессы работают внутри мотора и заставляют его приходить в движение.

двигатель поршневой фото

Четырехтактный цикл – это последовательность из четырех рабочих тактов. За начало обычно принимается такт, когда в камеры сгорания попадает горючая смесь. Хоть за время его течения в двигателе проходят и другие действия, обозначаемый такт – это один рабочий процесс. К примеру, такт сжатия – это не только сжатие. В этот период смесь перемешивается в цилиндрах, начинается формирование газа, она воспламеняется.

То же самое можно сказать и о других этапах работы двигателя. Самое важное здесь то, что разные процессы для лучшего понимания и упрощения рабочего цикла четырехтактного двигателя раскладывают лишь на четыре такта.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.

четырехтактный двигатель

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Сжатие

После заполнения камеры сгорания горючей смесью бензиновых паров и воздуха, если коленвал производит вращательные движения, поршень начнет возвращаться в свое нижнее положение. Впускной клапан на данном этапе начнет закрываться. А выпускной будет все еще закрыт.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.

четырехтактный поршневой двигатель как работает

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Выпуск

После совершения газами полезной работы они должны выйти из цилиндра, чтобы освободилось место для новой порции горюче-воздушной смеси. Это последний такт в рабочем цикле четырехтактного двигателя.

Газы на этом этапе находятся под давлением, существенно превышающем атмосферное. Температура к концу такта снижается примерно до 700 градусов. Коленвал посредством шатуна двигает поршень к ВМТ. Далее открывается выпускной клапан, газы выталкиваются в атмосферу через выхлопную систему. Что касается давления, то оно высокое только в самом начале. В конце такта оно снижается до 0,120 МПа. Естественно, полностью избавиться от продуктов сгорания в цилиндре невозможно. Поэтому они при следующем такте впуска смешиваются с топливной смесью.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.

цикл четырехтактного бензинового двигателя

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Дизельные моторы

Рабочий цикл четырехтактного дизельного двигателя – это такая же последовательность процессов, как и цикл карбюраторного мотора. Разница состоит в том, как протекает цикл, а также в различиях процессов образования смеси и воспламенения.

Такт впуска на дизеле

При движении поршня по направлению вниз газораспределительный механизм открывает впускной клапан. В камеру сгорания попадает определенное количество воздуха. Температура в цилиндре при этом составляет примерно 80 градусов. В дизельных двигателях система питания значительно отличается от бензиновых карбюраторных моторов. Например, гидравлическое сопротивление в них ниже, а давление немного повышается.

Такт сжатия в дизельном двигателе

На данном этапе работы поршень в камере сгорания идет по направлению вверх к ВМТ. Оба клапана в двигателе автомобиля находятся в закрытом состоянии. В результате работы поршня воздух в цилиндре сжимается. Степень сжатия в дизельном двигателе более высокая, чем в бензиновых моторах, а давление внутри цилиндра может достигать 5 МПа. Сжатый воздух существенно нагревается. Температуры могут достигать 700 градусов. Это нужно, чтобы воспламенилось топливо. Оно на дизельных моторах подается через форсунки, установленные на каждом цилиндре. В зимнее время в работе участвуют свечи накаливания. Они предварительно подогревают холодную смесь. Таким образом мотор легче запускается в зимнее время. Но такая система есть не на всех авто.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.

рабочий цикл четырехтактного бензинового двигателя

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

Выпуск в дизельном двигателе

На этом этапе выпускной клапан открыт, поршень движется к верхней точке. Из цилиндра принудительно удаляются продукты сгорания. Далее они идут на выпускной коллектор. После этого в работу включается каталитический нейтрализатор. Газы, проходя через него под высокой температурой, очищаются. В атмосферу уже выходит чистый, безвредный газ. На дизельных автомобилях дополнительно установлен сажевый фильтр. Он также способствует очистке газов.

Заключение

Мы подробно разобрали, как осуществляется рабочий цикл четырехтактного двигателя (проходит за два оборота коленчатого вала силовой установки). А сам цикл включает в себя много разных процессов.

Рабочий цикл четырехтактного двигателя — как это работает

Двигатель
В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

Рабочий цикл четырехтактного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Рабочий цикл четырехтактного двигателя

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.

Такт впуска

Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.
От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия

Работа двигателя
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход

В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска

Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12.
По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Двухтактный двигатель – особенности работы

Рабочий цикл четырехтактного двигателя
Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

ДвигательИменно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе.
Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Рабочий цикл двухтактного двигателя – достоинства и недостатки

Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

Рабочий цикл четырехтактного двигателя
Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве.
Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

Подписывайтесь на наши ленты в таких социальных сетях как,
Facebook,
Вконтакте,
Instagram,
Pinterest,
Yandex Zen,
Twitter и
Telegram:
все самые интересные автомобильные события собранные в одном месте.

Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный  воздух, а не горючая смесь, как в карбюраторном двигателе.

Первый такт — впуск.

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление  0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Рабочий цикл ДВС

Работа четырехтактного одноцилиндрового дизельного  двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200.  После этого рабочий цикл дизеля повторяется.
В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.
Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.
К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Работа дизельного двигателя, подробнее

Устройство и принцип работы четырёхтактного двигателя и двухтактного двигателя с


Преимущества четырёхтактных двигателей

  • Б́ольшая экономичность
  • Более чистый выхлоп (экологически чище)
  • Не требуется сложная выхлопная система
  • Меньший шум, вибрация
  • Отсутствие необходимости постоянного контроля уровня масла

 

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения
  • Б́ольшая мощность в пересчёте на 1 литр рабочего объёма
  • Проще и дешевле в изготовлении
  • Меньший вес

Устройство и принцип работы четырёхтактного двигателя и двухтактного двигателя


 

 

Рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.
Поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Пoршень снабжен металлическим стержнем — пальцем, соединение с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

1. Впуск — четырёхтактный двигатель

В процессе впуска поршень четырёхтактного двигателя идёт из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). Одновременно кулачком распредвала открывается впускной клапан, — в цилиндр четырёхтактного двигателя затягивается свежая топливно-воздушная смесь.

2. Сжатие — четырёхтактный двигатель

Пoршень четырёхтактного двигателя поднимается из НМТ в ВМТ, сжимая рабочую топливную смесь. Одновременно и значительно поднимается температура горючей смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия (не путать с компрессией). Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Но, для четырёхтактного двигателя с б́ольшей степенью сжатия требуется топливо с б́ольшим октановым числом, которое дороже.

3. Сгорание и расширение (рабочий ход поршня) — четырёхтактный двигатель

Незадолго до окончания такта сжатия горючая смесь воспламеняется искрой от свечи зажигания. Во время следования поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси именуется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы давление газов достигло максимальной величины когда пoршень будет находиться в ВМТ. Тогда использование энергии сгоревшего топлива будет максимальным. Скороть горения топлива практически не меняется, то есть занимает фиксированное время, следовательно чтобы достичь максимальной производительности двигателя нужно увеличивать угол опережения зажигания пропорционально уровню оборотов коленвала. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором воздействующим на прерыватель). В более современных двигателях для регулировки угла используется электронное опережение зажигания.

4. Выпуск — четырёхтактный двигатель

После НМТ такта рабочего хода поршня четырёхтактного двигателя открывается выпускной клапан, и поднимающийся поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и четырёхтактный цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндра/-ов горючей смесью, а также для лучшей очистки цилиндра/-ов четырёхтактного двигателя от отработанных газов.

 


Четырехтактный двигатель скутера:

1 — цилиндр с головкой
2 — крышка головки цилиндра
3 — карбюратор
4 — впускной патрубок
5 — электростартер.

Для ещё большей наглядности посмотри видеоролик, наглядно показывающий работу четырёхтактного двигателя. На этом видео демонстрируется автомобильный четырёхцилиндровый шестнадцатиклапанный (то есть, в каждом цилиндре по два впускных и выпускных клапана, для лучшей продувки) двигатель, однако сути это не меняет.

 

 

 


 

 

В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала (а не двух, как в четырёхтактных) за два (а не четыре) основных такта. У двухтактных двигателей отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет сам пoршень, который в процессе перемещения то закрывает, то открывает впускные, выпускные и продувочные окна. Поэтому двухтактный двигатель более прост в конструкции.

Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего в 2 раза числа рабочих тактов. Однако неполное использование хода поршня двухтактного двигателя для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60 — 70%.

 

Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:

Двухтактный двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндр.

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит за счёт топливной смеси, — смеси бензина и масла в определённой пропорции. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двухтактного двигателя (полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась бы топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно быть способно выдерживать высокие температуры и, сгорая вместе с топливом, оставлять минимум зольных отложений, то есть нагара.

Теперь о принципе работы. Весь рабочий цикл в двухтактных двигателях осуществляется за два такта.

 

1. Такт сжатия — двухтактный двигатель

Пoршень двухтактного двигателя поднимается от НМТ поршня (в таком положении он находится на рис. 2) к ВМТ поршня (положение поршня на рис.3), перекрывая сначала продувочное 2, а затем выпускное 3 окна цилиндра двухтактного двигателя. После закрытия поршнем выпускного отверстия в цилиндре начинается сжатие ранее поступившего в него топливной смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как пoршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру двухтактного двигателя.

 

2. Такт рабочего хода — двухтактный двигатель

При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, после этого температура и давление смеси резко подскакивают. Под действием теплового расширения газов поршень двухтактного двигателя опускается к НМТ, в это время расширяющиеся газы сгоревшей смеси совершают полезную работу, толкая поршень. В это же время, опускаясь, пoршень создает высокое давление в кривошипной камере двухтактного двигателя (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень двухтактного двигателя дойдет до выпускного отверстия (1 на рис. 4), оно откроется и таким образом выйдут отработавшие газы в выпускную систему, давление в цилиндре понизится. При дальнейшем перемещении пoршень открывает продувочное (впускное) окно (1 на рис. 5) и горючая смесь, сжатая в кривошипной камере, поступает по каналу (2 на рис. 5), заполняя цилиндр и одновременно продувая его от остатков отработавших газов.

Далее цикл повторяется.

Немного о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем пoршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому что пoршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя.

У большинства скутеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением, то есть с опережением, зависящим от оборотов коленвала. С ним расширяющаяся горючая смесь совершает работу с максимальной полезной отдачей, и двигатель развивает больше мощности.

 

 

 

 

 

 

 

Преимущества и недостатки двух- и четырехтактных двигателей.

Двухтактные преимущества

1. Меньший вес. Пример: 15 л.с. Двухтактный 36 кг четырёхтактный 45 кг.

2. Цена. Четырёхтактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже двухтактников.

3. Удобство перевозки двухтактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

4. Двухтактный двигатель живее реагирует на ручку газа. В четырёхтактных для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в двухтактных только один. Частый вопрос: А правда ли что четырёхтактный 15 л.с. бежит быстрее чем такой же двухтактный? Ответ: нет не правда. У обоих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один двигатель должен ехать быстрее второго?

Двухтактные недостатки

1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для двухтактного 300 грамм на одну лошадинную силу, для четырёхтактного 200 грамм.

2. Шумность. На максимальных оборотах двухтактные двигатели как правило работают немного громче четырёхтактных.

3. Комфорт. Четырёхтактные двигатели не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и двух и четырёхтактные вибрируют примерно одинаково) и не так дымят как двухтактные.

4. Долговечность. Довольно спорный пункт. Бытует мнение, что двухтактные двигатели менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от четырёхтактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны четырёхтактный двигатель по конструкции намного сложнее конкурента, состоит из значительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.

Какой же двигатель выбрать?

Взвесь все за и против изложенные выше и сделай выбор самостоятельно. Однозначного ответа на вопрос: какой из двигателей лучше ты не найдешь ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники.

 

Просмотров: 3654

РАБОЧИЙ ПРОЦЕСС (ЦИКЛ) ЧЕТЫРЕХТАКТНОГО ДИЗЕЛЬНОГО И ДВУХТАКТНОГО ДВИГАТЕЛЯ

РАБОЧИЙ ПРОЦЕСС (ЦИКЛ) ЧЕТЫРЕХТАКТНОГО БЕНЗИНОВОГО ДВИГАТЕЛЯ

1 такт. Впуск. Поршень перемещается в цилиндре вниз при открытом канале впуска и закрытом канале выпуска, в результате чего цилиндр заполняется смесью паров бензина и воздуха.

2 такт. Сжатие. Поршень перемещается в цилиндре вверх при закрытых обоих каналах, сжимая смесь в камере сгорания в верхней части цилиндра.

3 такт. Рабочий ход. В конце такта сжатия искра, проскакивающая между контактами свечи зажигания, воспламеняет пары бензина, которые быстро сгорают, нагревая газ в цилиндре до высокой температуры. При этом, соответственно, увеличивается давление, вынуждающее поршень перемещаться в цилиндре вниз. Оба канала остаются при этом закрытыми.

4 такт. Выпуск. Поршень перемещается вверх, при этом канал выпуска открывается, выпуская сгоревшие газы из цилиндра. В конце этого такта канал выпуска закрывается, а канал впуска снова открывается для следующего такта впуска, который следует за ним немедленно.

Полный цикл работы совершается за два оборота коленчатого вала.

Недостатком четырехтактного цикла всегда считалось то, что на каждый рабочий такт имеются три «холостых» такта.

Рабочий процесс (цикл) четырехтактного дизельного двигателя происходит в том же порядке, что и у четырехтактного бензинового. Отличием является то, что через впускные клапаны в цилиндры во время такта впуска подаётся воздух. При сжатии он разогревается до высокой температуры и обеспечивает воспламенение дизельного топлива, впрыскиваемого в цилиндры под большим давлением через форсунки. Дизельный двигатель более экономичен, но его детали при работе испытывают большие нагрузки и, соответственно, изготовляются более прочными, массивными и тяжелыми. При равной массе с бензиновым двигатель имеет меньшую мощность.



В четы­рехтактном двигателе рабочий процесс совершается за два оборо­та коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для 4-, 6- и 8-цилиндровых двигателей будет происхо­дить соответственно через 180, 120 и 90° поворота коленчатого вала.

Рабочий процесс (цикл) двухтактного двигателя:

Двухтактный двигатель теоретически должен развивать вдвое большую мощность по сравнению с четырехтактным того же размера (на практике – не более чем в 1,7 раза). Также его конструкция дает возможность отказаться от применения клапанов, используя сам поршень для открывания и закрывания каналов. В цилиндре имеются каналы: впуска, выпуска и перепуска.


Полный цикл работы совершается за один оборот коленчатого вала (т.е. за поворот вала на 360°).

Газовый двигатель (двигатель автомобиля с газобаллонным оборудованием) в целом не имеет конструктивных отличий от бензинового двигателя, за исключением системы питания, рассчитанной на использование сжатого (метан (СН4)) или сжиженного (смесь пропана (С3Н8) и бутана (С4Н10)) газов. Рабочий цикл принципиальных отличий не имеет. Газовый двигатель имеет меньшую удельную мощность, но более экологичен и дешевле в эксплуатации, так как использует топливо, стоящее в два раза дешевле, чем бензин.

Как работает 4-тактный двигатель

Чтобы привести ваше оборудование в действие, двигатель с верхним расположением клапанов выполняет повторяющийся четырехэтапный процесс, описанный ниже.

Элемент, обеспечивающий работу двигателей внутреннего сгорания

  • Воздух
  • Топливо
  • Сжатие
  • Искра

Шаг 1: Ход всасывания

Воздух и топливо попадают в небольшой двигатель через карбюратор. Работа карбюратора — подавать смесь воздуха и топлива, которая обеспечивает правильное сгорание.Во время такта впуска открывается впускной клапан между карбюратором и камерой сгорания. Это позволяет атмосферному давлению нагнетать топливовоздушную смесь в канал цилиндра, когда поршень движется вниз.

>> Проблемы с производительностью? Узнайте, как устранить неполадки при ремонте карбюратора и очистить / обслужить карбюраторы двигателя малого объема.

Шаг 2: Ход сжатия

Сразу после того, как поршень переместится в нижнюю точку своего хода (нижняя мертвая точка), в отверстии цилиндра находится максимально возможная воздушно-топливная смесь.Впускной клапан закрывается, и поршень возвращается обратно в отверстие цилиндра. Это называется тактом сжатия процесса 4-тактного двигателя. Топливно-воздушная смесь сжимается между поршнем и головкой блока цилиндров.

Шаг 3: Рабочий ход

Когда поршень достигает вершины своего хода (верхней мертвой точки), он будет в оптимальной точке для воспламенения топлива и получения максимальной мощности для вашего внешнего силового оборудования. В катушке зажигания создается очень высокое напряжение.Свеча зажигания позволяет отвести это высокое напряжение в камеру сгорания. Тепло, создаваемое искрой, воспламеняет газы, создавая быстро расширяющиеся перегретые газы, которые заставляют поршень опускаться обратно в отверстие цилиндра. Это называется рабочий ход .

Шаг 4: ход выпуска

Когда поршень снова достигает нижней мертвой точки, выпускной клапан открывается. По мере того, как поршень движется обратно по каналу цилиндра, он выталкивает отработавшие газы сгорания через выпускной клапан и из систем выпуска.Когда поршень возвращается в верхнюю мертвую точку, выпускной клапан закрывается, а впускной клапан открывается, и процесс 4-тактного двигателя повторяется.

Для любого повторения цикла требуется два полных оборота коленчатого вала, в то время как двигатель создает мощность только во время одного из четырех тактов. Чтобы машина продолжала работать, ей нужен маховик небольшого двигателя. Рабочий ход создает импульс, который толкает маховик, инерция которого удерживает его и коленчатый вал во время тактов выпуска, впуска и сжатия.

,

Двигатель четырехтактный

Четырехтактный цикл, используемый в бензиновых / бензиновых двигателях. Правая синяя сторона — это впуск, а левая желтая сторона — выхлоп. Стенка цилиндра представляет собой тонкую гильзу, окруженную охлаждающей жидкостью.

Видеомонтаж двигателей Отто, работающих на заводе Western Minnesota Steam Threshers Reunion (WMSTR) в Роллаге, штат Миннесота.

Четырехтактный двигатель , также известный как четырехтактный двигатель , представляет собой двигатель внутреннего сгорания, в котором поршень совершает четыре отдельных хода — впуск, сжатие, мощность и выпуск — во время двух отдельных оборотов коленчатого вала двигателя, и один единственный термодинамический цикл.

Есть два общих типа двигателей, которые тесно связаны друг с другом, но имеют существенные различия в своей конструкции и поведении. Самый ранний из них, который будет разработан, — это двигатель цикла Отто, который был разработан в 1876 году Николаусом Августом Отто в Кельне, Германия [1] , по принципу действия, описанному Alphonse_Beau_de_Rochas в 1861 году. Этот двигатель чаще всего называют двигателем. бензиновый двигатель или бензиновый двигатель, после топлива, которое его питает. [2] Второй тип четырехтактного двигателя — это дизельный двигатель, разработанный в 1893 году Рудольфом Дизелем также из Германии.Дизель создал свой двигатель, чтобы максимизировать эффективность, которой не хватало двигателю Отто. Есть несколько основных различий между двигателем цикла Отто и четырехтактным дизельным двигателем. Дизельный двигатель выпускается как в двухтактном, так и в четырехтактном исполнении. По иронии судьбы, компания Отто Deutz AG в современную эпоху производит в основном дизельные двигатели.

Цикл Отто назван в честь двигателя 1876 года Николауса А. Отто, который построил успешный четырехтактный двигатель, основанный на работах Жана Жозефа Этьена Ленуара. [1] Это был третий тип двигателя, разработанный Отто. Он использовал скользящие шлюзы пламени для воспламенения топлива, которое представляло собой смесь осветительного газа и воздуха. После 1884 года Отто также разработал магнето, позволяющее использовать электрическую искру для воспламенения, что было ненадежным для двигателя Ленуара.

Сегодня двигатель внутреннего сгорания (ДВС) используется в мотоциклах, автомобилях, лодках, грузовиках, самолетах, кораблях, тяжелом оборудовании, а также в его первоначальном предполагаемом использовании в качестве стационарного источника энергии как для кинетической, так и для выработки электроэнергии.Дизельные двигатели используются практически во всех тяжелых приложениях, таких как грузовики, корабли, локомотивы, производство электроэнергии и стационарные электростанции. Многие из этих дизельных двигателей являются двухтактными и имеют номинальную мощность до 105 000 л.с. (78 000 кВт).

Четыре цикла относятся к циклам впуска, сжатия, сгорания (мощность) и выпуска, которые происходят во время двух оборотов коленчатого вала за цикл мощности четырехтактных двигателей. Цикл начинается в верхней мертвой точке (ВМТ), когда поршень находится дальше всего от оси коленчатого вала.Цикл означает полный ход поршня от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ). (См. Мертвая точка.)

  1. Такт ВПУСКА: на впуске , или , такте впуска поршня, поршень опускается от верхней части цилиндра к нижней части цилиндра, уменьшая давление внутри цилиндра. Смесь топлива и воздуха, или просто воздух в дизельном двигателе, нагнетается атмосферным (или большим) давлением в цилиндр через впускной канал.Затем впускной клапан (ы) закрывается. Объем воздушно-топливной смеси, втягиваемой в цилиндр, по отношению к объему цилиндра называется объемным КПД двигателя.
  2. Такт СЖАТИЯ: при закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая воздух или топливно-воздушную смесь в камеру сгорания головки цилиндров.
  3. POWER такт: это начало второго оборота двигателя. Когда поршень находится близко к верхней мертвой точке, смесь сжатого воздуха и топлива в бензиновом двигателе воспламеняется, обычно свечой зажигания, или топливо впрыскивается в дизельный двигатель, который воспламеняется из-за тепла, выделяемого в воздухе во время ход сжатия.Результирующее сильное давление от сгорания сжатой топливно-воздушной смеси заставляет поршень вернуться в нижнюю мертвую точку.
  4. Такт ВЫПУСКА: во время хода выпуска поршень снова возвращается в верхнюю мертвую точку при открытом выпускном клапане. Это действие удаляет сгоревшие продукты сгорания из цилиндра путем вытеснения отработанной топливно-воздушной смеси через выпускной клапан (ы).

История

Цикл Отто

Двигатель Отто производства США 1920-х годов

Николаус Август Отто в молодости был коммивояжером в продуктовом магазине.В своих путешествиях он столкнулся с двигателем внутреннего сгорания, построенным в Париже бельгийским экспатриантом Жаном Жозефом Этьеном Ленуаром. В 1860 году Ленуару удалось создать двигатель двойного действия, который работал на осветительном газе с эффективностью 4%. 18-литровый двигатель Ленуара мог выдавать всего 2 лошадиные силы. Двигатель Ленуара работал на осветительном газе, который был сделан из угля, который был разработан в Париже Филипом Лебоном. [1] [3]

При испытании копии двигателя Ленуара в 1861 году Отто узнал о влиянии сжатия на топливный заряд.В 1862 году Отто попытался создать двигатель, чтобы улучшить низкий КПД и надежность двигателя Ленуара. Он попытался создать двигатель, который сжимал бы топливную смесь до воспламенения, но потерпел неудачу, так как этот двигатель работал не более чем за несколько минут до своего разрушения. Многие инженеры также безуспешно пытались решить проблему. [3]

В 1864 году Отто и Ойген Ланген основали первую компанию по производству двигателей внутреннего сгорания NA Otto and Cie (NA Otto and Company) .В том же году Отто и Си удалось создать успешный атмосферный двигатель. [3]

На заводе не хватило места, и в 1869 году его перевели в город Дойц, Германия, где компания была переименована в Deutz Gasmotorenfabrik AG (Компания по производству газовых двигателей Deutz). [3] В 1872 году Готтлиб Даймлер был техническим директором, а Вильгельм Майбах руководил конструкцией двигателей. Даймлер был оружейным мастером, который ранее также работал над двигателем Ленуара.

К 1876 году Отто и Лангену удалось создать первый двигатель внутреннего сгорания , который сжимал топливную смесь перед сгоранием , обеспечивая гораздо более высокий КПД, чем любой другой двигатель, созданный к тому времени. [1]

Готлиб Даймлер и Вильгельм Майбах оставили свою работу в Отто и Си и разработали первый высокоскоростной двигатель Отто в 1883 году. В 1885 году они выпустили первый автомобиль, оснащенный двигателем Отто. Petroleum Reitwagen использовал систему зажигания с горячей трубкой и топливо, известное как Ligroin, чтобы стать первым в мире силовым транспортным средством с двигателем внутреннего сгорания, использующим четырехтактный двигатель, основанный на конструкции Николауса Отто. В следующем году Карл Бенц выпустил четырехтактный автомобиль, который некоторые называют первым автомобилем в мире.

В 1884 году компания Отто, ныне известная как Gasmotorenfabrik Deutz (GFD), разработала электрическое зажигание и карбюратор.

В 1890 году Daimler и Maybach основали компанию, известную как Daimler Motoren Gesellschaft. Сегодня эта компания известна как Daimler-Benz.

Подробнее см. Двигатель Отто.

Дизельный цикл

Audi Diesel R15 в Ле-Мане

Дизельный двигатель (см. Эту страницу) представляет собой техническое усовершенствование двигателя Отто Цикл 1876 года. В то время как Отто в 1861 году понял, что эффективность двигателя можно повысить, сначала сжав топливную смесь перед ее воспламенением, Рудольф Дизель хотел разработать более эффективный тип двигателя, который мог бы работать на гораздо более тяжелом топливе.Двигатели Ленуара, Отто Атмосфера и Отто Компрессии (как 1861, так и 1876) были разработаны для работы на освещающем газе (угольный газ). С той же мотивацией, что и Отто, Дизель хотел создать двигатель, который дал бы небольшим промышленным предприятиям собственный источник энергии, чтобы они могли конкурировать с более крупными компаниями, и, как Отто, уйти от требования быть привязанным к городским источникам топлива. Как и Отто, потребовалось более десяти лет, чтобы создать двигатель с высокой степенью сжатия, который самовоспламенялся бы при попадании этого топлива в цилиндр.В своем первом двигателе Дизель использовал распыление воздуха в сочетании с топливом.

Во время первоначальной разработки один из двигателей лопнул, чуть не погубив дизель. Он настаивал и, наконец, создал двигатель в 1893 году. Двигатель с высокой степенью сжатия, который воспламеняет топливо за счет теплоты сжатия, теперь называется дизельным двигателем, независимо от того, четырехтактный или двухтактный.

Четырехтактный дизельный двигатель уже много десятилетий используется в большинстве тяжелых условий эксплуатации. Основная причина этого заключается в том, что в нем используется тяжелое топливо, которое содержит больше энергии, требует меньшего количества очистки и более дешевое производство (хотя в некоторых регионах мира дизельное топливо стоит больше, чем бензин).Наиболее эффективные двигатели Otto Cycle работают с КПД около 30%. Двигатель Volkswagen Jetta TDI объемом 1,9 литра добился 46%. Он использует усовершенствованную конструкцию с турбонаддувом и прямым впрыском топлива. КПД некоторых судовых дизелей BMW с керамической изоляцией превышает 60%.

И Audi, и Peugeot соревнуются в гонках на выносливость серии Ле-Ман на гоночных автомобилях с дизельным двигателем. Это четырехтактные, четырехклапанные, высокооборотные дизельные двигатели с турбонаддувом, которые доминируют в основном из-за экономии топлива и необходимости делать меньше остановок.

Термодинамический анализ

Чарльз Лоу

Идеализированная p-V диаграмма цикла Отто для четырехтактных двигателей: такт впуска (A) выполняется изобарическим расширением, за ним следует такт сжатия (B), выполняемый адиабатическим сжатием. При сгорании топлива происходит изохорный процесс, за которым следует адиабатическое расширение, характеризующее рабочий ход (C). Цикл замыкается изохорическим процессом и изобарическим сжатием, характерным для такта выпуска
(D).

Термодинамический анализ реальных четырехтактных или двухтактных циклов — непростая задача. Однако анализ можно значительно упростить, если использовать стандартные допущения [4] . Результирующий цикл, который очень похож на реальные условия эксплуатации, и есть цикл Отто.

Требования к октановому числу

Октановое число топлива

Основная статья: Октановый рейтинг

Двигатели Отто

Во время цикла сжатия двигателя внутреннего сгорания со сжатым зарядом температура топливовоздушной смеси повышается, как описано Чарльзом Лоу, исключительно из-за сжатия газов.Повышение температуры составляет несколько сотен градусов.

Огнеупорная башня, демонстрирующая различный вес различных продуктов.

Топливо, используемое в четырехтактных двигателях, чаще всего представляет собой фракции сырой нефти, каменноугольной смолы, горючего сланца или песков, которые производятся в процессе, называемом крекингом нефти. Температура воспламенения преломляемого топлива зависит от его веса. Он отделен, будучи нагреванием и извлекается на различных высотах в огнеупорной башне. Чем выше поднимается пар топлива в башне, тем меньше ее вес и меньше энергии в ней содержится.При переработке нефти существует стандартный вес топлива и продуктов, которые удаляются и который связан с конкретным добытым материалом. Бензин — легкий огнеупорный продукт и называется легкой фракцией. Как легкая фракция, она имеет относительно низкую температуру вспышки (то есть температуру, при которой она начинает гореть при смешивании с окислителем).

Топливо с низкой температурой вспышки может самовоспламеняться во время сжатия, а также может воспламениться из-за нагара, оставшегося в цилиндре или головке грязного двигателя.В двигателе внутреннего сгорания самовоспламенение может произойти в неожиданные моменты. Во время нормальной работы двигателя, когда топливная смесь сжимается, создается электрическая дуга для воспламенения топлива. На низких оборотах это происходит около ВМТ (верхней мертвой точки). По мере увеличения оборотов двигателя точка искры смещается вперед, так что топливный заряд может воспламениться в более эффективный момент сжатия топливного заряда, чтобы топливо могло начать гореть, даже когда оно все еще сжимается. Это обеспечивает более эффективную мощность на основе возрастающей молекулярной плотности рабочего тела, поскольку в этом заключается эффективность двигателя IE со сжатым зарядом.Более плотная рабочая среда (воздушно-топливная смесь) будет испытывать большее нагревание и, следовательно, давление будет повышаться в меньшем количестве, когда ее молекулы будут более плотно упакованы вместе.

Мы можем видеть это в двух конструкциях двигателей Отто. Двигатель без компрессии работал с КПД 12%. Двигатель со сжатым зарядом имел КПД 30%. Дизельный двигатель может достигать 70% (лабораторный двигатель Diesel испытал эффективность 75,6%, VW TDI — 46%).

Проблема с двигателями сжатого заряда заключается в том, что повышение температуры сжатого заряда может вызвать преждевременное воспламенение.Если это произойдет в неподходящее время и будет слишком энергичным, это может привести к выходу двигателя из строя. Фракции нефти имеют сильно различающиеся точки воспламенения (температура, при которой топливо может самовоспламеняться). Это необходимо учитывать при проектировании двигателя и топлива.

В двигателях искра задерживается при запуске двигателя и увеличивается только до соответствующей величины в зависимости от частоты вращения двигателя. Это определяется лабораторными исследованиями. Поскольку двигатель вращается быстрее, он может принять более раннее воспламенение, поскольку движущийся фронт пламени не успеет стать разрушительным.

В топливе склонность сжатой топливной смеси к преждевременному воспламенению ограничивается химическим составом топлива. Существует несколько сортов топлива для различных уровней мощности двигателей. Топливо изменяют, чтобы изменить температуру его самовоспламенения. Есть несколько способов сделать это. Поскольку двигатели спроектированы с более высокими степенями сжатия, в результате гораздо более вероятно возникновение преждевременного зажигания, поскольку топливная смесь будет сжиматься до более высокой температуры перед преднамеренным воспламенением.Более высокая температура способствует более эффективному испарению топлива, такого как бензин, и является фактором более высокого КПД двигателя с более высокой степенью сжатия. Более высокие коэффициенты сжатия также означают, что расстояние, на которое поршень может толкать для выработки мощности, больше (что называется степенью расширения).

Таким образом, должен быть стандартизированный тест и стандартная система отсчета для описания вероятности самовоспламенения топлива. Октановое число является мерой устойчивости топлива к самовоспламенению. Топливо с более высоким октановым числом обеспечивает гораздо более высокую степень сжатия, которая извлекает больше энергии из топлива и более эффективно преобразует эту энергию в полезную работу, в то же время предотвращая повреждение двигателя из-за предварительного зажигания.Топливо с высоким октановым числом также дороже.

Дизельные двигатели

Дизельные двигатели по своей природе не имеют проблем с преждевременным зажиганием. Их беспокоит, можно ли начать горение. Описание вероятности возгорания дизельного топлива называется цетановым числом. Поскольку дизельное топливо имеет низкую летучесть, его может быть очень трудно запустить в холодном состоянии. Для запуска холодного дизельного двигателя используются различные методы, наиболее распространенными из которых является использование свечи накаливания.

В некоторых случаях, например, при сжигании отработанного кулинарного масла, топливо само по себе является твердым, и перед использованием его необходимо нагреть до сжижения.Часто здесь жалуются на то, что выхлопные газы могут иметь запах картофеля фри.

Принципы проектирования и проектирования

Ограничения выходной мощности

Четырехтактный цикл
1 = ВМТ
2 = BDC
A: Впуск
B: Компрессия
C: Питание
D: Выпуск

Максимальная мощность, вырабатываемая двигателем, определяется максимальным количеством всасываемого воздуха. Количество мощности, генерируемой поршневым двигателем, зависит от его размера (объема цилиндра), будь то двухтактная или четырехтактная конструкция, объемного КПД, потерь, отношения воздух-топливо, теплотворной способности топлива. , содержание кислорода в воздухе и скорость (об / мин).Скорость в конечном итоге ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускоряющие силы. При высоких оборотах двигателя может произойти физическая поломка и дрожание поршневого кольца, что приведет к потере мощности или даже к разрушению двигателя. Флаттер поршневого кольца возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер кольца нарушает уплотнение между кольцом и стенкой цилиндра, что приводит к потере давления и мощности в цилиндре.Если двигатель вращается слишком быстро, пружины клапанов не могут действовать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «смещением клапана», и это может привести к контакту поршня с клапаном, что серьезно повредит двигатель. На высоких скоростях смазка поверхности раздела стенок поршневого цилиндра имеет тенденцию к разрушению. Это ограничивает скорость поршня промышленных двигателей примерно до 10 м / с.

Поток впускного / выпускного отверстия

Выходная мощность двигателя зависит от способности впуска (воздушно-топливной смеси) и выхлопных газов быстро перемещаться через отверстия клапана, обычно расположенные в головке блока цилиндров.Чтобы увеличить выходную мощность двигателя, неровности впускного и выпускного трактов, такие как дефекты литья, могут быть устранены, а с помощью стенда воздушного потока можно изменить радиусы поворотов порта клапана и конфигурацию седла клапана, чтобы уменьшить сопротивление. Этот процесс называется переносом, и его можно выполнить вручную или с помощью станка с ЧПУ.

Нагнетатель

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было производить больше мощности за каждый рабочий ход.Это может быть сделано с помощью некоторого типа устройства сжатия воздуха, известного как нагнетатель, который может приводиться в действие коленчатым валом двигателя.

Наддув увеличивает пределы выходной мощности двигателя внутреннего сгорания относительно его рабочего объема. Чаще всего нагнетатель всегда работает, но существуют конструкции, которые позволяют отключать его или работать с различными скоростями (относительно частоты вращения двигателя). Недостаток наддува с механическим приводом состоит в том, что часть выходной мощности используется для приведения в действие нагнетателя, в то время как мощность тратится впустую в выхлопе высокого давления, так как воздух был сжат дважды, а затем получил больший потенциальный объем при сгорании, но только расширился. в один этап.

Турбонаддув

Турбокомпрессор — это нагнетатель, который приводится в действие выхлопными газами двигателя с помощью турбины. Он состоит из двухкомпонентной высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона приводится в действие за счет выхода выхлопных газов.

На холостом ходу и на низких или средних оборотах турбина вырабатывает небольшую мощность из-за небольшого объема выхлопных газов, турбокомпрессор оказывает незначительное влияние, и двигатель работает почти без наддува.Когда требуется гораздо большая выходная мощность, частота вращения двигателя и открытие дроссельной заслонки увеличиваются до тех пор, пока выхлопные газы не станут достаточными, чтобы «раскрутить» турбину турбокомпрессора, чтобы начать сжатие во впускной коллектор гораздо большего количества воздуха, чем обычно.

Турбонаддув обеспечивает более эффективную работу двигателя, поскольку он приводится в действие давлением выхлопных газов, которое в противном случае (в основном) было бы потрачено впустую, но существует конструктивное ограничение, известное как турбо-задержка. Увеличенная мощность двигателя не доступна сразу из-за необходимости резко увеличить обороты двигателя, чтобы создать давление и раскрутить турбо, прежде чем турбо начнет производить полезное сжатие воздуха.Увеличенный объем впуска вызывает увеличение выхлопа и ускоряет вращение турбонагнетателя и так далее, пока не будет достигнута стабильная работа на высокой мощности. Другая трудность заключается в том, что более высокое давление выхлопных газов заставляет выхлопные газы передавать больше тепла механическим частям двигателя.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу поршня — это отношение длины шатуна к длине хода поршня. Более длинный шток уменьшит боковое давление поршня на стенку цилиндра и силы напряжения, тем самым увеличивая срок службы двигателя.Это также увеличивает стоимость и высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с квадратным сечением, и наоборот, двигатель с диаметром отверстия, который меньше его длины хода, является двигателем с квадратным углом.

Клапанный

Клапаны обычно приводятся в действие распределительным валом, вращающимся на половину скорости коленчатого вала. По всей длине он имеет ряд кулачков, каждый из которых предназначен для открытия клапана во время соответствующей части такта впуска или выпуска.Толкатель между клапаном и кулачком — это контактная поверхность, по которой кулачок скользит, открывая клапан. Во многих двигателях используется один или несколько распределительных валов «над» рядом (или каждым рядом) цилиндров, как показано на рисунке, на котором каждый кулачок непосредственно приводит в действие клапан через плоский толкатель. В двигателях других конструкций распределительный вал находится в картере, и в этом случае каждый кулачок контактирует с толкателем, который контактирует с коромыслом, который открывает клапан. Конструкция верхнего кулачка обычно допускает более высокие обороты двигателя, поскольку обеспечивает наиболее прямой путь между кулачком и клапаном.

Клапанный зазор

Клапанный зазор означает небольшой зазор между толкателем клапана и штоком клапана, который обеспечивает полное закрытие клапана. На двигателях с механической регулировкой клапана чрезмерный зазор вызывает шум клапанного механизма. Обычно зазор необходимо регулировать каждые 20 000 миль (32 000 км) с помощью щупа.

В большинстве современных двигателей используются гидравлические подъемники для автоматической компенсации износа компонентов клапанного механизма. Грязное моторное масло может привести к поломке подъемника.

Энергетический баланс

Двигатели Отто имеют КПД около 30%; Другими словами, 30% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть приходится на потери из-за трения, вспомогательного оборудования двигателя и отходящего тепла. [5] Есть несколько способов восстановить часть энергии, потерянной в отходящем тепле. Использование турбонагнетателя в дизельных двигателях очень эффективно за счет повышения давления поступающего воздуха и, по сути, обеспечивает такое же повышение производительности, как и при увеличении рабочего объема.Компания Mack Truck несколько десятилетий назад разработала турбинную систему, которая преобразовывала отработанное тепло в кинетическую энергию, которая возвращалась в трансмиссию двигателя. Совсем недавно BMW разработала двухступенчатую систему рекуперации тепла, аналогичную системе Mack, которая восстанавливает 80% энергии выхлопных газов и повысила эффективность двигателей Otto, в которых она применяется, на 15%, поставив двигатель Otto наравне с некоторыми дизельными двигателями. двигатели. [6]

Напротив, шестицилиндровый двигатель может преобразовывать более 50% энергии сгорания в полезную энергию вращения.

Современные двигатели часто намеренно строятся так, чтобы они были немного менее эффективными, чем они могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция выхлопных газов и каталитические нейтрализаторы, уменьшающие смог и другие атмосферные загрязнители. Снижению эффективности можно противодействовать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси. [7]

В Соединенных Штатах в соответствии с корпоративной средней экономией топлива автомобили должны достигать в среднем 35 баллов.5 миль на галлон (миль на галлон) по сравнению с текущим стандартом 25 миль на галлон. Поскольку автопроизводители стремятся соответствовать этим стандартам к 2016 году, следует рассмотреть новые способы разработки традиционного двигателя внутреннего сгорания (ДВС). Некоторые потенциальные решения для повышения эффективности использования топлива в соответствии с новыми требованиями включают зажигание после того, как поршень находится дальше всего от коленчатого вала, известное как верхняя мертвая точка, и применение цикла Миллера. Вместе эта модернизация может значительно снизить расход топлива и выбросы NOx.

См. Также

Ссылки

Общие источники

Внешние ссылки

,

Услуги Wärtsilä | Обслуживание 4-тактных двигателей

  • Домой

  • морской
  • энергии

    • На пути к 100% возобновляемой энергии
    • Исследуйте решения
    • Эксплуатировать и поддерживать
    • Решения по отраслям
    • Выучить больше

      • Технические сравнения
      • Ссылки

        • Независимые производители электроэнергии
        • Горное дело и цемент
        • Нефтяной газ

          • Терминал СПГ Торнио Манга, Торнио, Финляндия

        • Прочие промышленные
        • коммунальные услуги

          • Alteo Group, Венгрия

          • Станция Антилопы, Техас, США

          • Арун, Суматра, Индонезия

          • Centrica, Великобритания

          • DREWAG, Германия

          • Станция генерации Эклутна Палмер, Аляска, США

          • Калум 5, Гвинейская Республика

          • Kiisa ERPP I и II

          • Кипеву II-III, Кения

          • Kraftwerke Mainz-Wiesbaden AG

          • Макухари, Япония

          • Marquette Energy Center, США

          • Станция Пирсолл, Техас, США

          • Песанггаран, Бали

          • Port Westward Unit 2, Портленд, Орегон, США

          • Восточный Тимор, Индонезия

          • Станция Woodland 3 Generation, Модесто, Калифорния, США

          • Пуант-Монье, Маврикий

          • Pivot Power, Великобритания

          • Бенндейл, Миссисипи, США

          • AGL Energy Limited, Австралия Электростанция Баркер Инлет, Австралия

          • Грасиоза, Азорские острова, Португалия

          • Бремен, Германия

      • Селектор силовой установки

      • Загрузки

      • Записи вебинаров

  • Служба поддержки
  • Около
  • Карьера
  • инвесторы
  • СМИ
  • устойчивость

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *